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Abstract  Fungal infections pose an increasing 
threat to public health. New pathogens and changing 
epidemiology are a pronounced risk for nosocomial 
outbreaks. To investigate clonal transmission between 
patients and trace the source, genotyping is required. 
In the last decades, various typing assays have been 
developed and applied to different medically impor-
tant fungal species. While these different typing 
methods will be briefly discussed, this review will 
focus on the development and application of short 

tandem repeat (STR) genotyping. This method relies 
on the amplification and comparison of highly varia-
ble STR markers between isolates. For most common 
fungal pathogens, STR schemes were developed and 
compared to other methods, like multilocus sequence 
typing (MLST), amplified fragment length polymor-
phism (AFLP) and whole genome sequencing (WGS) 
single nucleotide polymorphism (SNP) analysis. The 
pros and cons of STR typing as compared to the other 
methods are discussed, as well as the requirements 
for the development of a solid STR typing assay. The 
resolution of STR typing, in general, is higher than 
MLST and AFLP, with WGS SNP analysis being the 
gold standard when it comes to resolution. Although 
most modern laboratories are capable to perform 
STR typing, little progress has been made to stand-
ardize typing schemes. Allelic ladders, as developed 
for Aspergillus fumigatus, facilitate the comparison 
of STR results between laboratories and develop 
global typing databases. Overall, STR genotyping is 
an extremely powerful tool, often complimentary to 
whole genome sequencing. Crucial details for STR 
assay development, its applications and merit are dis-
cussed in this review.
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Introduction

Fungal infections have been increasing over the 
last decades, with the latest estimate of 2.5  million 
annual deaths [1]. Due to the opportunistic nature 
of a few hundred fungal species, these infections 
mainly take place in healthcare settings, with 
immunocompromised patients being most at risk for 
invasive infections [2]. The advance of medical care 
and treatments are accompanied by an increase in the 
number of immunocompromised patients, thereby 
increasing the prevalence of invasive fungal diseases. 
Although most fungal species thrive at temperatures 
below the human body temperature, climate change 
and natural disasters make fungi more thermotolerant, 
increasing the virulence of various fungal species [3]. 
In addition to the increased prevalence in healthcare 
settings, drug resistance is on the rise, often induced 
by medical or agricultural use of antifungal drugs, 
complicating diagnosis and treatment, and increasing 
mortality [4]. To address the urge of awareness 
of fungal disease, the WHO published the Fungal 
Priority Pathogens List [5]. Two fungi classified in the 
critical priority group include Aspergillus fumigatus 
and Candida auris. The first is a filamentous 
saprobic fungus ubiquitous in the environment and 
thermotolerant [6]. Due to the extensive use of 
azole pesticides in agricultural settings, this species 
is acquiring resistance on a large scale, with > 10% 
azole resistance reported in various studies and 
associated with an increased mortality rate [6]. 
Another emerging fungal species is the yeast C. auris 
which is often involved in nosocomial outbreaks and 
is rapidly acquiring antifungal resistance to multiple 
antifungal classes, thereby reducing treatment options 
and increasing mortality [7].

Given this emergence of drug resistant pathogens, 
the healthcare sector faces new threats. Hospitals 
need to treat an increasing number of patients, 
often immunocompromised and deal with new 
or uncommon pathogens, possibly elicited by 
prophylaxis or poorly understood risk factors [8]. 
Especially in resource-limited countries, hospitals 
are often unable to deal with the high number of 
admitted patients, resulting in insufficient infection 
prevention measurements, which may lead to 
nosocomial transmissions and infection outbreaks [9]. 
Environmental exposure is another source of fungal 
outbreaks [10]. To investigate or prevent nosocomial 

transmission during outbreaks, genotyping is of 
paramount importance and should be available 
at least for mycology reference laboratories [11]. 
Genotyping also allows investigations towards the 
spread and species population structure, leading to 
novel insights about the emergence of species and 
the spread of antifungal resistance. For example, C. 
auris genotyping demonstrated that this species was 
independently introduced at least six times in the 
human population and transmission of azole-resistant 
isolates is common [7]. Even echinocandin and pan-
resistant isolates are reported, albeit rare [12]. This 
highlights the necessity and benefit of genotyping 
methods.

The current review discusses the application of 
short tandem repeat (STR) genotyping on various 
medically important fungal species and compares 
STR genotyping to other commonly employed 
methods. Although several fungal genotyping reviews 
are available, a comprehensive fungal STR review 
discussing all genotyped species is absent to date. 
First, all common genotyping methods currently 
in use will be presented, and their characteristics, 
advantages and limitations discussed. Next, we 
outline all STR genotyping schemes of various 
medically important fungal species and include a 
comparison to other methods, and conclude with 
future research directions and outlook. STR schemes 
have also been applied to numerous fungal plant 
pathogens and species closely related to fungi such 
as Enterocytozoon bieneusi [13, 14], but these are 
outside the scope of this review. Additionally, while 
we discuss important considerations when developing 
STR assays, the actual development of a STR assay is 
not elaborated further as it was previously discussed 
[11].

Fungal Genotyping Methods

Multilocus Sequence Typing

The multilocus sequence typing (MLST) method 
has been developed for several fungal species 
and has been used in numerous laboratories [15]. 
With this method several housekeeping genes 
are amplified with PCR, followed by Sanger 
sequencing. The generated sequences are then 
compared between isolates to determine the 
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phylogenetic relatedness. As this method usually 
involves housekeeping genes, normally present in 
the pangenome, the typing scheme can be applied 
to a wide variety of isolates and is not hampered 
by mismatches, insertions or deletions in primer 
binding regions [16]. Another significant advantage 
is the excellent reproducibility of this method, 
even between different laboratories as incorrect 
base calling in Sanger sequencing is rare, although 
the calling of heterozygous bases in diploid fungi 
can be challenging. With MLST, the population 
structure of a species (e.g. clades or drug resistant 
lineages) can be determined and compared to 
a global database [17]. Using MLST, species 
complexes were elucidated and reclassified into 
distinct species, later confirmed by whole genome 
sequencing (WGS). For example, group 2 and 3 in 
the Candida parapsilosis complex were reclassified 
as C. orthopsilosis and C. metapsilosis, respectively 
[18]. Furthermore, with MLST the geographic 
origin of fungi has been determined, e.g. European 
Cryptococcus gattii species complex infections 
appeared partially autochthonous [19]. Although 
MLST had a vast contribution to phylogenetic 
studies, its use in outbreak settings is limited, as the 
few housekeeping genes, with their relatively low 
mutation rate, do not provide a high discriminatory 
power. Isolates with an identical sequence type (ST) 
may be epidemiologically unrelated and originate 
from a different source. The turnaround time and 
costs is another drawback, especially in resource 
limited countries.

Amplified Fragment Length Polymorphism Analysis

One of the least labor intensive and most inexpensive 
genotyping methods is amplified fragment length 
polymorphism analysis (AFLP) DNA fingerprinting 
[20]. When executing this method, total genomic 
DNA is enzymatically digested and adapters are 
ligated, followed by selective PCR amplification. 
Next, gel electrophoresis is performed on the 
amplicons and the fingerprints can be compared 
to infer the genetic relatedness [21]. Isolates are 
differentiated by insertions or deletions within 
amplicons or polymorphisms in the restriction 
sites. Although a high resolution can be achieved 
in a single run, results between runs and especially 

between laboratories cannot be compared reliably 
[21, 22], which likely contributes to the reduced 
application of this method over the last years.

Fourier‑Transform Infrared Spectroscopy

In contrast to the assays above, Fourier-transform 
infrared (FTIR) spectroscopy does not involve 
PCR and is a high-throughput and straightforward 
technique [23]. The microbial cell composition 
generates an IR spectrum based on vibrational modes 
of light-absorbing bonds, primarily carbohydrates. 
The spectra of multiple isolates can be compared 
between each other to determine a possible genetic 
relationship. While the method is more often applied 
to bacteria, the usage in the field of medical mycology 
is limited and still in development [23]. To date, FTIR 
utilizing the IR Biotyper platform has been applied 
mainly to a few Candida species [24, 25].

Whole Genome Sequencing

Currently, whole genome sequencing (WGS) is 
considered as the gold standard for fungal genotyping 
as it outcompetes the other methods in regards to 
resolution [26]. Isolates can be differentiated if these 
harbor a minimal genetic difference of few single 
nucleotide polymorphisms (SNPs), making this 
the ideal discriminatory power in outbreak settings 
[26]. However, the usage is restricted by several 
factors, including the associated costs, especially 
in resource-limited regions, and long turnaround 
time, which can be unfavorable when dealing with 
potential outbreaks. Moreover, WGS requires a high 
performance computational infrastructure to process 
the vast amount of generated data and sufficient 
bioinformatics capacity, while SNP calling pipelines 
require validation and standardization which is often 
lacking. Nonetheless, costs are steadily decreasing, as 
is the turnaround time.

Short Tandem Repeat Genotyping

Considering the limitations of the previously men-
tioned genotyping techniques, short tandem repeat 
(STR) typing remains an appealing alternative 
method. STR genotyping assays rely on PCR ampli-
fication of a set of STR markers, also known as 
microsatellites or simple sequence repeats (SSRs) 
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of which the length is subsequently determined 
with (gel) electrophoresis (Fig. 1) [11]. Depending 
on the ploidy of a given species, one or more copy 
numbers are generated and the comparison of copy 
numbers between isolates determines their genetic 
relatedness. The capacity of a single STR marker 
or the complete set of markers to distinguish iso-
lates based on their genotype is defined as the dis-
criminatory index, which can be calculated with 
the Simpson’s Diversity Index or the Hunter Index 
[27, 28]. Each STR marker exhibits a different dis-
criminatory index, e.g. the number of found geno-
types compared to the number of included isolates, 
with markers consisting of long repeat units gener-
ally displaying a lower variability than markers with 
short repeat units [29, 30]. A high resolution STR 
assay can be achieved by including a sufficient num-
ber of STR markers with each a high discriminatory 
index, making sure that unrelated isolates are differ-
entiated from each other. For most STR schemes of 
fungi and other microorganisms, six to nine mark-
ers are included. The use of six to nine markers in 
fungal STR schemes makes it feasible to genotype 
large collections of isolates with a relatively high 
resolution as compared to other genotyping meth-
ods such as AFLP or MLST. Moreover, with AFLP 

it is impossible to add data prospectively. Yet, STR 
assays do not reach the resolution as obtained with 
WGS SNP analysis. Therefore, in STR scheme 
development and outbreak analyses where STR 
genotypes are similar, WGS should be used compli-
mentary. Novel techniques based on next generation 
sequencing (NGS) might allow inclusion of more 
STR markers more easily, as will be discussed later.

The advantage of STR analysis above WGS SNP 
analysis is its preferred, more realistic timeframe. 
After DNA extraction, a single PCR run of 1–2  h 
is needed, followed by (gel) electrophoresis that 
typically takes less than one hour. A disadvantage of 
STR assays is the necessity to develop a new scheme 
for each species studied. The development of an STR 
scheme requires several important aspects. First, 
the scheme should have a high resolution to obtain 
a detailed population structure and differentiate 
isolates that are not closely related. Second, the 
primer binding site at the STR flanking sequences 
should be conserved so all genotypes within the 
species will be amplified. Third, STR markers should 
represent single copy targets to avoid multiple copy 
numbers for one marker. Fourth, it should be easy to 
apply and interpret the STR, which can be reached by 
selecting a small set of STR markers that show few 
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Fig. 1   Short tandem repeat (STR) genotyping schematic. A 
Structure of STR and copy numbers, B different nucleotide 
repeat units, C dendrogram with corresponding copy number 

of eight diploid isolates, D minimum spanning tree of the same 
eight diploid isolates with the size of circles reflecting the 
number of isolates displaying an identical genotype
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stutter peaks and are easily amplified in multiplex, 
thereby also reducing costs [31]. Fifth, a validation 
by WGS should be performed, including both related 
and unrelated isolates to estimate the discriminatory 
power. Lastly and sixth, loci should be equally 
distributed across the genome.

Candida and Other Medically Relevant Yeasts

Candida albicans

Globally, the diploid yeast C. albicans is the most 
common causative agent of candidemia. It is the first 
ranking Candida species listed on the WHO Fungal 

Priority Pathogens List and considered to be among 
the most virulent species, while antifungal resistance 
is rare [32]. The yeast is part of the human microbi-
ome and usually colonizes the oral cavity and gas-
trointestinal tract [33]. When the immune system 
of patients weakens, it is thought that C. albicans 
translocates to the bloodstream from non-sterile 
sites such as the gastrointestinal system [32]. Bot-
terel et  al. [34] developed an STR scheme that con-
sists of three markers, identified in a single reference 
genome, and is amplified in monoplex. Application 
of this scheme included isolates from non-sterile sites 
and blood, and were often found to display identical 
STR genotypes, supporting an in-host source for the 
bloodstream infection (Table  1) [34, 35]. Another 

Table 1   Overview of short tandem repeat (STR) schemes developed for yeast species. For each scheme, the number of developed 
assays, amplified markers and validation with whole genome sequencing (WGS) is specified

Species No. of assays No. of 
markers

PCR characteristic Isolate application WGS validation 
(no. of isolates)

References

Candida albicans 2 3 Monoplex French No [34]
10 Monoplex Portuguese Yes (13) [27]

Candida auris 1 15 Multiplex (5) Global Yes (196) [30, 38]
Candida parapsilosis 2 3 Multiplex (1) Mainly Portuguese No [49]

6 Multiplex (2) Global Yes (15) [50]
Candida tropicalis 3 6 Monoplex Chinese No [56]

8 Monoplex Chinese No [58]
6 Multiplex (2) Global Yes (42) [57, 60]

Candida glabrata 
(Nakaseomyces 
glabratus)

1 8 Monoplex Global No [63]

Candida krusei (Pichia 
kudriavzevii)

2 8 Monoplex Chinese No [68]
6 Multiplex (2) Global Yes (10) [28]

Wickerhamomyces 
anomalus (Candida 
pelliculosa)

1 6 Multiplex (2) Mainly Indian Yes (11) [73]

Candida orthopsilosis 1 4 Monoplex Chinese No [76]
Kodamaea ohmeri 

(Pichia ohmeri)
1 3 Monoplex Chinese No [79]

Diutina catenulata 
(Candida catenulata)

1 4 Monoplex Mainly European No [81]

Cryptococcus 
neoformans

2 3 Monoplex Global No [84]
9 Multiplex (3) Dutch, Cuban, 

Slovenian and 
Indian

No [86, 88, 89, 91]

Cryptococcus 
deneoformans

1 7 Monoplex Dutch and Slovenian No [88, 91]

Cryptococcus 
deuterogattii

1 10 Multiplex (3) and 
monoplex

Global No [93]
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scheme was established by Sampaio et al., [27].which 
includes ten markers, also amplified in monoplex 
and identified in a single reference genome. Typ-
ing results of this scheme were compared to WGS 
and isolates with the same STR genotype were also 
highly related according to WGS analysis [36]. As C. 
albicans is the primary cause of vulvovaginal can-
didiasis (VVC), the assay of Sampaio et al. [27] was 
used to type sequential isolates of patients with recur-
rent VVC. Most sequential isolates demonstrated the 
same STR genotype, suggesting a persistent vulvo-
vaginal infection with the same strain, which was also 
found for sequential candidemia isolates [36]. WGS 
SNP analysis on the latter isolates also demonstrated 
a low genetic diversity, underscoring the concord-
ance between WGS and STR results [36]. The two 
STR schemes developed for the diploid C. albicans 
amplify a lower number of markers when compared 
to most haploid species. Although the discrimina-
tory power increases when more markers are ampli-
fied, diploid species generate up to two copy numbers 
per marker, while haploid species only generate one. 
As such, a lower number of markers can be utilized 
for diploid species to achieve a discriminatory power 
comparable to haploid species.

Candida auris

As mentioned above, the haploid species C. auris 
is often involved in nosocomial transmission and 
various genotyping studies have been conducted 
[37]. A single STR assay has been developed to date, 
which in first instance consisted of four multiplex 
PCR reactions of three STR markers each (Table 1) 
[30]. This scheme of in total 12 STR markers 
was first applied to more than 400 isolates from 
numerous countries and revealed four major clades as 
previously found by other genotyping methods [30]. 
In a follow-up study the STR assay was validated and 
further optimized using a collection of 171 isolates 
previously analyzed by WGS SNP calling [38]. After 
addition of two additional STR markers to improve 
the discriminatory power for clade IV, all isolates 
differing more than 50 SNPs were distinguished by 
the extended STR scheme of 14 markers. While this 
is a relatively high resolution, it is not sufficient to 
define clonal transmission, as we previously found 
that sequential isolates from the same host obtained 
11 SNPs at most in ten months [12]. Furthermore, 

STR genotypes within clades often demonstrate 
identical or highly related genotypes, while these are 
highly variable between clades. This is also observed 
with WGS SNP analysis, which demonstrated at 
least 10.000–200.000 SNPs difference between the 
currently identified six clades, while the genetic 
diversity within these clades is lower [39]. Thus, 
using this STR assay in a high prevalence region, 
identical STR profiles are insufficient to rule out 
clonal transmission and requires WGS SNP analysis 
to confirm nosocomial transmission. On the other 
hand, difference of a single STR marker does not rule 
out a clonal relationship, as within a collection of 171 
isolates, there were two isolates that were identical 
according to WGS SNP analysis, but differed one 
copy number in one marker by STR analysis [38]. 
A different copy number of at least two markers was 
required to define isolates as unrelated in hospital 
outbreak analyses. Despite the suboptimal resolution 
as compared to WGS SNP analysis, the STR assay 
has a superior discriminatory power when compared 
to other methods. Using ITS sequencing, not all C. 
auris clades can be differentiated, yielding a lower 
discriminatory power compared to STR typing [25]. 
AFLP typing often groups C. auris isolates randomly 
or incorrectly while STR adequately demonstrates 
relatedness [25]. Additionally, MALDI-TOF MS and 
FTIR showed a poor correlation with STR results, 
indicating both methods needs to be improved before 
they can be applied to clinical epidemiological 
settings [25]. Thus, STR analysis is the genotyping 
tool of choice if WGS SNP calling is not applicable.

There are numerous examples of C. auris STR 
typing and mostly cover resource limited countries. 
The most notable application was the indication of 
a novel clade as a single isolate from Iran was not 
related to the other four clades [30]. The distinct 
clade V was subsequently confirmed by including 
more cases from Iran and the application of WGS 
SNP calling [41]. Additionally clade VI isolates 
were differentiated from prior reported clades via 
an in silico STR analysis on WGS data [40]. The 
high resolution and reproducibility of the STR assay 
also led to novel insights with its application on C. 
auris isolates from Brazil [42]. Here, STR assigned 
these isolates to clade I while inclusion of previously 
typed isolates allowed the identification of a distinct 
subclade, not found previously. This suggested these 
isolates were not introduced from countries with a 



Mycopathologia (2024) 189:72	 Page 7 of 20  72

Vol.: (0123456789)

high clade I prevalence like India but originated from 
a local source in Brazil [42].

Besides the investigation of population structures, 
the STR assay has been utilized for different C. auris 
outbreaks settings, as illustrated by the following 
two examples. In Kuwait, C. auris candidemia and 
colonization in patients from different hospitals 
were reported for 18  months [43]. Most isolates 
originated from a secondary-care hospital, and all 
these isolates, except one, were found to have an 
identical STR profile. As the single isolate also 
lacked the ERG11Y132F mutation, in contrast to all 
other isolates, it was likely not related. In the other 
hospitals in Kuwait, slightly different STR genotypes 
were found, suggesting potential clonal transmission 
within the secondary-care hospital, however this 
was not confirmed by WGS SNP analysis [43]. The 
latter is essential to confirm clonal transmission, as 
isolates that display identical or highly related STR 
profiles with only 1 marker difference, might still 
originate from the same source within a hospital, 
since STRs are highly variable [38]. In addition, 
the epidemiological situation of the regions needs 
to considered. In a region with low prevalence, an 
identical or highly related STR profile is much more 
likely to indicate clonal transmission than a region 
with high prevalence. In India C. auris is currently 
highly prevalent and it was the first country to report 
a C. auris outbreak in 2012 [44]. Application of 
STR typing to clinical and environmental isolates 
collected from 2019 to 2020 from a single chest 
hospital in Delhi identified multiple clade I genotypes 
closely related to each other [45]. Here the closely 
related STR genotypes indicated multiple strains 
circulating within the hospital, as confirmed by 
WGS SNP analysis. Thus when the typed species is 
highly prevalent and relatedness is suspected based 
on STR typing, WGS is required, while in a region 
with a low prevalence the chance of two independent 
introductions with an identical STR genotype is low 
and STR analysis is sufficient to point out clonal 
transmission [46].

Candida parapsilosis

Globally, but especially in southern Europe and 
Türkiye, C. parapsilosis is a common diploid 
pathogen in healthcare settings with emerging 
resistance to azoles and echinocandins and the cause 

of numerous outbreaks [47, 48]. An STR assay 
developed by Sabino et  al. [49] used initially 11 
markers but only retained three markers, amplified in 
monoplex, which showed the highest discriminatory 
power in a global collection (Table 1). By performing 
WGS SNP calling on isolates with identical STR 
genotypes according to the scheme of Sabino et  al. 
[36] isolates displayed a low genetic difference. A 
subsequent study of Diab-Elschahawi et  al. [50] 
added three markers in multiplex to the previous three 
markers. Using these STR assays, C. parapsilosis 
clusters were found that occasionally consist of 
fluconazole resistant isolates sharing the same 
resistance mechanism [50–52]. Many of these clusters 
were not restricted to a single ward, highlighting 
the ability of C. parapsilosis to cause widespread 
transmission when infection control measures are 
not properly enforced [53]. More recently, STR 
typing of the scheme by Diab-Elschahawi et al. [54] 
was applied to isolates from an Italian center, also 
uncovering large clusters. In another study, STR 
results were compared to FTIR outcomes [54]. The 
genotyping results did not correlate well, suggesting 
the accuracy of FTIR requires improvement, as it 
was previously shown that STR results correlate well 
to WGS. Due to the good correlation with WGS and 
high resolution, STR typing of C. parapsilosis is 
highly suitable to investigate ongoing outbreaks [51, 
55].

Candida tropicalis

The diploid C. tropicalis is considered one of the 
major medically important yeast species, also due 
to its increasing azole resistance, and is especially 
prevalent in tropical regions, like Latin America 
and India [32]. To date, three STR schemes were 
developed that amplify different markers (Table  1) 
[56–58]. The first reported scheme from Wu et  al. 
[56] used six markers in monoplex and typed a set 
of Chinese isolates with both MLST and STR. Loci 
were identified from a single reference genome. As 
expected, STR analysis generated more genotypes 
than MLST, and as such MLST clusters were further 
differentiated in related STR genotypes. Application 
of this STR scheme pinpointed the gastrointestinal 
tract as the source of invasive C. tropicalis infections 
as isolates from this source had identical genotypes 
when compared to isolates obtained from blood [35]. 
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The second scheme of Fan et  al. [58] consists of 
eight markers, extracted from one reference genome, 
amplified in monoplex and was also applied to 
Chinese isolates. Here, STR results were compared 
to pulsed-field gel electrophoreses (PFGE), which 
compares chromosomal bands separated by gel 
electrophorese, with PFGE having a slightly higher 
discriminatory power, but has a long turnaround 
time and poor inter-lab comparability [11, 58]. 
Both methods correlated well in this study with the 
STR scheme slightly less discriminatory. The most 
recent developed STR assay of Spruijtenburg et  al. 
[57] consists of six markers, is amplified in two 
multiplex PCR reactions and was developed using 
one reference genome and five unrelated isolates to 
identify conserved flanking regions. Comparison 
to the gold standard WGS demonstrated that the 
number of different microsatellite markers correlated 
well with SNP differences, while two isolates with 
an identical STR profile differed only 111 SNPs. 
Application of this scheme led to the identification 
of clusters and related isolates enriched for azole 
resistance in Brazil and Egypt, which also shared 
the same ERG11 substitutions [59, 60]. Based on 
the, at present, limited comparison to WGS, it is not 
possible to delineate the discriminatory power of 
these three STR schemes. Ideally, the resolution of 
these schemes should be compared by applying them 
on a set of isolates also typed by WGS SNP analysis. 
While most STR markers are selected based on their 
high variability because of the high mutation rate, it is 
worthwhile to hypothesize that for individual markers 
a lower variability might be beneficial to establish the 
clade origin. For C. tropicalis a recent genotyping 
study using WGS and MLST on a large global 
collection demonstrated different clades, of which 
some were enriched for azole resistance [61]. The 
present STR schemes are unable to allocate isolates 
to a specific clade, as most markers are too variable 
and their copy number is not unique for a specific 
clade. Markers with long repeat units are generally 
more conserved and are more likely to provide unique 
genotypes for a specific clade [38]. Such markers 
might be added to current schemes to allocate isolates 
to clades. Overall, all STR genotyping assays applied 
to C. tropicalis showed a high genetic diversity with 
limited nosocomial transmission and rarely outbreaks 
involved [59, 62].

Candida glabrata

In Europe and the United States, C. glabrata (also 
known as Nakaseomyces glabratus) is the second 
yeast species causing candidemia after C. albicans. 
C. glabrata exhibits intrinsically elevated minimum 
inhibitory concentrations (MICs) for fluconazole 
and is haploid [32]. One STR scheme was developed 
with the use of a single reference genome and 
eight markers were amplified in monoplex on a 
global isolate collection (Table  1) [63]. Subsequent 
application on isolates from the gastrointestinal tract 
and blood from French patients found clustering 
of isolates from these different sampling locations 
within single patients [64]. As C. glabrata is a 
commensal species in the gastrointestinal tract, it 
is thought that colonized patients can developed 
deep infections when the immunological status of 
patients decreases [64]. Other STR studies reported 
comparable results, with an overall high genetic 
diversity between isolates, indicating limited clonal 
transmission between patients [65, 66]. To date, no 
comparison between STR and WGS results have been 
made which is required to estimate the discriminatory 
power.

Candida krusei

The last Candida species listed on the WHO Fungal 
Priority Pathogens List [5], Candida krusei, also 
known as Pichia kudriavzevii, is often diploid and 
sometimes triploid [67]. Fluconazole prophylaxis 
is a known risk factor as the species has intrinsic 
elevated MICs to this antifungal. To date, two typing 
assays have been developed (Table  1) [28, 68]. The 
first scheme of Gong et  al. [68] selected 33 loci 
extracted from a single reference genome. These were 
successfully amplified in monoplex for 48 clinical 
Chinese isolates from 15 hospitals in ten cities. All 
isolates were differentiated from each other [68]. 
For future application, the authors suggested only 
eight loci to retain the discriminatory power while 
reducing costs and turnaround time. Further reduction 
of markers might be possible, as application of 
three out of eight final markers of the scheme from 
Gong et  al. [68] was also sufficient to differentiate 
all isolates, although additional markers will likely 
increase the resolution when typing larger isolate 
collections. The scheme of van Haren et al. consists 
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of six markers amplified by two multiplex PCRs. 
Conserved primer binding sites were identified with 
WGS of five geographically diverse isolates and all 
markers were subsequently successful amplified for 
a global isolate collection, showing a high genetic 
diversity. Application of this scheme identified 
clusters suggesting nosocomial transmission, which 
was subsequently confirmed with WGS for some 
isolates [28]. More recently, the scheme was used 
to type C. krusei isolates causing candidemia and 
vulvovaginal candidiasis from Türkiye and all isolates 
displayed unique genotypes, suggesting nosocomial 
transmission is an overall rare event for this species, 
as was previously also indicated with MLST [69, 70]. 
A comparative study of both STR schemes and WGS 
investigating the same isolates would establish the 
discriminatory power of both assays.

Wickerhamomyces anomalus

In addition to the six WHO yeast priority pathogens 
[5], assays for rare species were developed as well. 
Wickerhamomyces anomalus, previously known as 
Candida pelliculosa or Pichia anomala, is diploid and 
frequently used in the food industry for fermentation 
purposes [71]. On rare occasions, this yeast is able 
to cause invasive bloodstream infections, with 
immunocompromised neonates at highest risk [72]. A 
single STR scheme was developed and compared to 
WGS results (Table 1) [73]. Markers and conserved 
flanking regions were selected based on WGS data 
of five geographically diverse isolates, leading to 
the inclusion of six markers in two multiplex PCRs. 
The analysis of some isolates by WGS demonstrated 
that most isolates with an identical STR genotype 
exhibited exceptionally low SNP numbers with eight 
SNPs at most [73]. The scheme was applied to a large 
collection of mainly Indian isolates and four large 
clusters were found in a single hospital, with clonal 
transmission of multiple strains concurrently taking 
place in multiple wards. Remarkably, one isolate 
showed an unexpected high number of 210 SNPs 
when compared to the other isolates with an identical 
STR genotype. Upon closer visual inspection of WGS 
data, nearly all SNPs were allocated to a region of 
approximately 400 kb in one chromosome. The other 
isolates were heterozygous in this region while the 
deviant isolate was homozygous. This difference is 

likely explained by loss of heterozygosity (LOH). 
LOH can be induced in a short timeframe by different 
forms of stress that include azole exposure and 
high temperatures [74]. As such, LOH can result in 
incorrect inferred genetic relatedness with automated 
SNP calling pipelines when SNPs are not visually 
inspected. At the moment, the extend of LOH 
occurring during outbreak situations is unknown but 
further investigation is warranted for diploid species.

Candida orthopsilosis

C. parapsilosis and the rare pathogens C. 
metapsilosis and C. orthopsilosis are members of 
the diploid C. parapsilosis species complex [75]. 
For C. orthopsilosis, an STR typing assay was 
recently developed based on an initial number of 51 
loci present in three reference genomes (Table  1) 
[76]. Subsequent application of all 4 markers in 
monoplex on 68 Chinese isolates, which included 
invasive isolates, uncovered two large clusters. 
These clusters were also allocated to the same 
AFLP and ITS genotype, although the overall 
discriminatory power of STR was higher in this 
study. The authors suggested using only six out of 
the 51 markers to achieve the same discriminatory 
power [76]. Given that most C. orthopsilosis are 
hybrid isolates that frequently undergo LOH [77], 
and LOH did not alter the STR genotyping results 
of W. anomalus, STR might pose a more suitable 
typing option if WGS SNP results are automated or 
not carefully inspected.

Kodamaea ohmeri

Another rare human haploid pathogen is Kodamaea 
ohmeri (former Pichia ohmeri), for which infections 
are globally reported, albeit sporadically. This 
yeast is commonly used in the food industry for 
fermentation [78]. Recently, a typing scheme 
consisting of three markers that were selected 
from 50 loci present in one reference assembly and 
amplified in monoplex, was applied to a relatively 
large collection of Chinese isolates collected from 
30 hospitals (Table  1) [79]. Multiple clusters were 
found that were mostly restricted to a single center 
involving multiple hospital wards. Additionally, 
one cluster was found to be fluconazole resistant. 
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This indicates multiple events of nosocomial 
transmissions of either susceptible or resistant 
isolates. A notable downside of this scheme is the 
limited number of markers amplified. Although 
this reduces costs, the discriminatory power is 
likely lower in comparison to other STR schemes 
that include more markers. This remains to be 
investigated using a larger collection of genetically 
different isolates and comparison to WGS data.

Diutina catenulata

The rare opportunist yeast Diutina catenulata, 
previously known as Candida catenulata causes 
fungemia in immunocompromised hosts [80]. 
Furthermore, acquired azole resistance via mutations 
in ERG11 has been reported [80]. A recently 
developed STR scheme with four markers extracted 
from a single reference genome was applied on 45 
isolates in monoplex (Table  1) [81]. A total of 22 
genotypes was observed. These grouped in eleven 
clades, often consisting of isolates from the same 
country. Three out of four isolates with mutations 
in ERG11 clustered, suggesting a common ancestor 
acquired the mutation. Moreover, finding isolates 
with identical genotypes within a single hospital 
suggested clonal nosocomial transmission [81].

Cryptococcus neoformans

The basidiomycetous haploid yeast C. neoformans is 
an opportunistic pathogen in immunocompromised 
patients and mainly causes infections of the central 
nervous system, but may also present as pulmonary 
and/or disseminated disease [82]. Limited human-
to-human transmission is reported and various 
environmental niches of the pathogen have been 
identified [82, 83]. The first scheme of Hanafy et al. 
[84] selected 15 random loci from one reference 
genome and amplified these markers in monoplex in 
a global isolate collection, resulting in three markers 
with the highest variability (Table 1). Application of 
this scheme on environmental and clinical isolates 
showed a clear distinction between the two sources 
that identified 13 genotypes in 53 environmental 
isolates that were mostly different from the ten 
genotypes found in 36 clinical isolates [85]. 
Interestingly, no difference in antifungal resistance 
or capsule size was observed suggesting another 

explanation for the source clustering. The second 
assay of Illnait-Zaragozi et  al. [86] selected markers 
based on the same reference genome which resulted 
in amplification of nine markers in three multiplex 
PCRs, which was applied to a Cuban collection of 190 
isolates identifying 109 genotypes (Table 1). Genetic 
diversity of 426 Asian isolates of C. neoformans was 
determined using the same STR analysis showing a 
correlation of the genotypes with the original source 
of the isolates and resistance to 5-flucytosine [87]. 
Other Dutch and Cuban studies on meningitis patients 
showed recurrent infections that were caused in 
some patients by the same strain while other patients 
acquired a new strain causing the infection [86, 88]. 
An Indian study showed a separation between clinical 
and environmental isolates but also compared the 
results to MLST showing a good correlation [89].

Cryptococcus deneoformans

Cryptococcus deneoformans, originally known 
as C. neoformans var. neoformans (serotype D), 
was classified as a distinct species via molecular 
phylogenetics [90]. Together with C. neoformans, 
these species are the most clinically relevant of the C. 
neoformans complex and are also frequently isolated 
from the environment [90]. In the aforementioned 
study on C. neoformans by Hagen et  al. [88] an 
STR typing scheme for C. deneoformans was also 
developed. This scheme consists of seven loci found 
in a single reference genome and was species specific 
(Table 1). From 53 isolates 32 genotypes were found, 
while two distinct strains were found in one patient. 
Such coinfection was also found in a genotyping 
study on both C. neoformans and C. deneoformans 
isolates from Slovenia, which showed the presence 
of both species in some patients[91]. Finally, a single 
hybrid (serotype AD) was found with STR typing, 
highlighting the ability to resolve hybrid species and 
their haploid parentals.

Cryptococcus deuterogattii

While C. deuterogattii, previously known as 
Cryptococcus gattii AFLP6/VGII, infections are less 
common than C. neoformans and C. deneoformans, 
they have been isolated across wide geographic 
ranges and outbreaks have also been reported [92]. 
The most prominent outbreak occurred on Vancouver 
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Island and the Pacific Northwest affecting healthy 
individuals [92]. A STR genotyping assay consisting 
of ten markers, amplified in three multiplex PCRs and 
one monoplex PCR, was applied to a global collection 
of 178 isolates (Table 1) [93]. STR results, supported 
by AFLP and MLST data, showed the highest genetic 
and recombination diversity in Amazonian isolates 
when compared to isolates from other continents, 
suggesting there was an ancient dispersal from the 
Amazon rainforest. This study also found that the 
notorious Vancouver Island outbreak was genetically 
unrelated to the Pacific Northwest outbreak, where 
STR greatly improved the understanding of C. 
deuterogattii outbreaks and dispersal [93].

STR Typing of Medically Important Filamentous 
Fungi

Aspergillus fumigatus

Due to its high prevalence in invasive and 
pulmonary aspergillosis, A. fumigatus was one 
of the first haploid fungal species for which STR 
schemes were developed (Table 2) [94, 95]. While 
the scheme of Bart-Delabesse et  al. applied four 
markers in monoplex, the scheme of de Valk 
et  al. [94, 95] called STRAf utilizes nine markers 

amplified in three multiplex PCRs. For both 
assays the markers were selected based on a single 
reference genome, possibly limiting amplification 
of genetically divergent genotypes harboring 
mutations in the primer binding sites. Phylogenetic 
investigations by both schemes showed high genetic 
diversity with clinical and environmental isolates 
randomly distributed, indicating likely exchange 
between environmental and clinical isolates 
[96–98]. The STR assay of de Valk et al. [99–101] 
was used to investigate the increasing number 
of A. fumigatus aspergillosis cases within single 
healthcare centers. This revealed an absence of 
large clusters, indicating limited clonal propagation 
within these centers, which was confirmed by WGS 
in one study [99]. The STR of de Valk et al. [102] 
was also compared with AFLP, which demonstrated 
a higher discriminatory power for STR to genotype 
A. fumigatus. This allowed the identification of 
multiple genotypes in respiratory samples with 
the same STR assay while these were not found 
with AFLP [102]. Lastly, in another study, the 
STR genotype of A. fumigatus was successfully 
determined in formalin-fixed paraffin embedded 
tissues and serum samples from five patients with 
invasive aspergillosis [103].

To date, A. fumigatus is the only fungal species 
for which an allelic ladder has been developed, 
allowing direct comparison of STR results between 

Table 2   Overview of short tandem repeat (STR) scheme developed for filamentous and other fungi. For each scheme, the number of 
developed assays, amplified markers and validation with whole genome sequencing (WGS) is specified

*This STR scheme includes Sporothrix brasiliensis, S. schenckii and S. globosa

Species No. of assays No. of 
markers

PCR characteristic Isolate application WGS validation 
(no. of isolates)

References

Aspergillus fumigatus 2 4 Monoplex Global No [94]
9 Multiplex (3) Global Yes (14) [95]

Aspergillus flavus 3 7 Multiplex French and Tunisian No [107]
24 Multiplex American No [108]

9 Multiplex (3) Indian, Iranian Yes (11) [106]
Aspergillus terreus 1 9 Multiplex (3) Global No [113]
Microsporum canis 3 2 Monoplex Global No [117]

8 Monoplex Global No [119]
6 Multiplex (1) USA No [120]

Sporothrix brasiliensis 1 9 Multiplex (3) Brazilian Yes (21) [125]
Sporothrix species* 1 15 Multiplex (5) Brazilian No [124]
Exophiala dermatitidis 1 6 Multiplex (2) Global No [128]
Pneumocystis jirovecii 1 6 Monoplex Global No [133]
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laboratories [104]. The ladder consists of reference 
fragments of varying sizing that serve as a calibra-
tion for the gel electrophoresis. Five laboratories 
with experience in STR typing all typed the same 
isolates and found that the length of amplified mark-
ers can differ up to nearly seven nucleotides [104]. 
With the use of the allelic ladder, all laboratories 
were able to produce identical copy numbers, which 
could be stored in a global genotyping database as 
is common practice for MLST.

Aspergillus flavus

In medicine and agriculture, the haploid species A. 
flavus is highly relevant as it is a common agent of 
invasive aspergillosis and may produce aflatoxins 
that contaminate crops [105]. A total of three STR 
assays were developed of which two were applied 
to mainly clinical isolates and one exclusively to 
environmental isolates (Table  2) [106–108]. The 
environmental scheme of Grubisha et  al. [108] 
consists of 24 loci that were identified in one 
reference genome and are amplified in multiplex. 
The STR scheme by Rudramurthy et  al. utilizes 
nine markers based on a single reference genome, 
which are amplified in three multiplex PCRs. This 
assay was applied to an Indian collection with 
various clinical presentations, yielding a high 
genetic diversity as was also found with AFLP 
[106]. However, with STR multiple genotypes 
were found in clinical samples, indicating the 
presence of distinct strains and demonstrating 
the inferior discriminatory power of AFLP [106]. 
Some isolates from different patients had identical 
genotypes, suggesting clonal expansion within the 
hospital environment, with construction work or air 
filtering systems as a potential source comparable 
to what was found for A. fumigatus [99]. The same 
microsatellite typing scheme of 143 clinical and 
environmental Iranian isolates demonstrated 118 
different genotypes with a high diversity index with 
identification of a possible outbreak at a pulmonary 
ward [109]. STR and WGS was used to characterize 
a series of 11 isogenic A. flavus isolates isolated 
from a patient with pulmonary aspergillosis. 
Over a period of three months, the initially azole-
susceptible isolate developed azole resistance. STR 
analysis and WGS revealed high genetic relatedness 
of all isolates, indicating a persistent infection by 

one single genotype [110]. Another scheme of 
Hadrich et  al. [107] identified again the repeats 
from one reference genome that utilized seven 
markers in multiplex. The scheme was applied 
to isolates from France and Tunesia and found a 
high degree of genetic diversity and geographical 
clustering with no indication of nosocomial 
transmission. Application of this assay on a total 
of 29 environmental and clinical avian isolates 
demonstrated unique genotypes of all isolates, 
except for one clinical and one environmental 
isolate that shared an identical genotype [111].

Aspergillus terreus

The proportion of A. terreus in clinical specimens 
is generally low, with an increase in specific regions 
[112]. Yet, the haploid pathogen is widely studied 
as it has intrinsically elevated MICs to amphotericin 
B, which correlates with clinical failure [112]. A 
single STR assay has been developed to date, which 
amplifies nine markers in three multiplex PCRs [113]. 
The markers were identified from a single reference 
genome and primers were designed on flanking 
sequences without the use of WGS to identify 
conserved regions. Multiple studies indicated a high 
genetic diversity with the identification of many 
unique genotypes as was also found with AFLP 
(Table 2) [113]. In a single patient, multiple isolates 
were found to be genetically distinct, indicating 
colonization by multiple strains [113]. No clustering 
based on geographic region or clinical presentation 
was found in two studies from France and India 
[113, 114]. Conversely in Tyrol, Austria, dominant 
genotypes from clinical samples and the environment 
were found [115]. This suggests patients acquire a 
clonal propagating strain from the environment, but 
it remains to be determined what the source in this 
region is.

Microsporum canis

The zoophilic dermatophyte Microsporum canis 
is globally distributed but the epidemiology can 
differ based on age or sex [116]. Transmission 
either occurs by contact with infected animals or via 
humans. Three microsatellite typing schemes have 
been developed to study the genetic relatedness and 
transmission of isolates [116]. The scheme developed 
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by Sharma et  al. [117] included two dinucleotide 
repeats that were amplified in monoplex in 101  M. 
canis isolates from various continents (Table  2). 
Genotyping resulted in 11 genotypes with the 
largest cluster consisting of 50 isolates. Subsequent 
application by da Costa et al. on a total of 102 human, 
feline and canine M. canis isolates from Brazil found 
14 genotypes without the presence of the dominant 
genotype found earlier by Sharma et  al. [117, 118]. 
Another scheme was developed by Pasquetti et  al. 
and involved six dinucleotide repeats identified 
from a single reference genome, in addition to the 
two markers from Sharma et  al. [119] there were 
all amplified in monoplex (Table  2). Genotyping 
of 26 isolates revealed eight genotypes, indicating a 
higher discriminatory power than previous studies 
employing only two markers. A subsequent study 
from the USA genotyped 180 isolates used the 
STR scheme of Pasquetti et al. [120] and found 122 
unique genotypes with two feline clusters restricted 
to two states, indicating a shared source. Different 
Japanese studies also utilized the scheme of Pasquetti 
et  al. [116, 121] and found few isolates displaying 
identical genotypes although one notable example 
was a cluster within a family with a domestic cat as 
the possible source of infection. Aneke et al. included 
three markers from Pasquetti et al. [122] and included 
three novel markers, which were all six combined into 
a single multiplex PCR, thereby reducing the costs 
and increasing typing capacity (Table  2). Typing of 
66 isolates from southern Italy using this scheme 
found 18 genotypes that could be divided into two 
clusters, allowing the authors to compare genotypes 
to differences between hosts and their symptoms. 
Their scheme proved useful for genotyping, although 
no significant differences were found between clusters 
regarding symptoms and virulence.

Other Medically Important Fungi

Sporothrix brasiliensis

Within Latin America, the dimorphic haploid fungus 
Sporothrix brasiliensis is posing a major health 
threat, affecting large numbers of humans and cats 
[22]. Since the first retrospective report from Rio 
de Janeiro, Brazil in 1998, the prevalence is nearing 
epidemic proportions in some densely populated areas 

and is recently reported in neighboring countries, as 
well as in the United Kingdom [123]. Recently, two 
STR assays were developed with a different species 
selectivity. One scheme consists of 15 markers 
amplified in 5 multiplex PCRs and is able to type S. 
brasiliensis, in addition to the medically relevant and 
closely related Sporothrix species, S. schenckii and S. 
globosa (Table 2) [124]. The ability to type multiple 
species is unique among STR typing schemes, which 
are usually restricted to a single species. By applying 
this assay to a varied collection of Brazilian isolates, 
a high genetic diversity was found for all three 
species. Unfortunately, no comparison or validation 
with other genotyping methods was performed, so 
the discriminatory power of this assay remains to 
be determined. The other STR scheme was solely 
developed for S. brasiliensis, utilizes nine markers 
amplified in three multiplex PCR reactions, and was 
applied to a different collection of Brazilian isolates 
[125]. On a large subset of these isolates, WGS was 
performed to validate the inferred genetic relatedness 
and estimate the typing resolution. Isolates with an 
identical STR genotype differed less than 150 SNPs, 
a discriminatory power comparable to assays for 
other aforementioned species. Most interestingly, the 
results of both developed assays in combination with 
WGS clearly demonstrated that S. brasiliensis is not a 
clonal species as previously suspected. The observed 
genetic diversity could not have been accrued since its 
first report, but suggests that the species is introduced 
independently numerous times into the mammalian 
population in Brazil. In addition, large STR clusters 
spanning wide geographic areas were found, with 
isolates from both humans and cats, indicating 
zoonotic transmission. In Brazilian border countries, 
S. brasiliensis cases have recently been reported, 
and two human cases from Buenos Aires, Argentina 
were genotyped with the S. brasiliensis specific 
assay [126]. Both isolates were found to be identical, 
suggesting they originate from the same source and 
were found to be closely related to previously typed 
Brazilian isolates. Taken together, STR demonstrated 
to be a very powerful tool, greatly expanding the 
understanding of the population structure and 
transmission of S. brasiliensis in South America.
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Exophiala dermatitidis

The black haploid yeast-like fungus E. dermatitis is a 
ubiquitous fungus, frequently found in the respiratory 
tract of cystic fibrosis (CF) patients [127], and 
occasionally causes infections with various clinical 
presentations [128]. A recently established STR 
assay utilizing six markers, extracted from a single 
reference genome, in two multiplex PCR reactions, 
was applied to clinical and environmental isolates 
from various geographic regions (Table  2) [129]. 
Isolates were differentiated based on the source and 
region, with clinical isolates not found to be related 
to environmental ones. Additionally, the study 
investigated sequential isolates from CF patients 
and found persistent colonization of the same strain 
in some patients, while others harbored strains with 
different genotypes over time. With WGS it can be 
determined whether the inclusion of six markers 
yields sufficient discriminatory power for this haploid 
species.

Pneumocystis jirovecii

The unculturable haploid P. jirovecii causes severe 
respiratory infections and detection depends on PCR 
or staining methods [130]. The pathogen poses a high 
transmission risk in immunocompromised patients, 
making genotyping techniques necessary to track the 
spread and epidemiology within healthcare centers, 
especially when there is a suspicion for outbreaks 
[10]. A microsatellite scheme that utilizes six 
markers, extracted from a single reference genome, 
was subsequently applied in monoplex to respiratory 
samples from two French hospitals and compared to 
a MLST scheme (Table  2) [131, 132]. Once again, 
STR found more genotypes than MLST. Another 
study conducted on samples from Uganda, Spain and 
the United States indicated high genetic diversity as 
well, and did not find any country specific clusters or 
clades [133].

Future Directions

Since the first established fungal STR scheme two 
decades ago, the number of applications is steadily 

increasing and a multitude of medically important 
fungal species are now covered. STR typing is a high-
resolution typing method, is highly reproducible, 
has a low turnaround time and is relatively easy to 
implement. As such, STR genotyping certainly  has 
a role in at least mycology reference laboratories 
performing outbreak analyses. The interchangeability 
of typing results between laboratories would require 
more allelic ladders to be developed in order to 
create global databases as was done for MLST. 
Alternatively, reference isolates can be used to 
compare results between laboratories but it should 
be taken into account that copy numbers may change 
over time.

For most rare or novel species there are no 
STR typing schemes available but in these 
instances WGS would be a more suitable option 
as development of a specific STR scheme is time-
consuming [134]. Future research could focus 
on the  develop schemes for other (emerging) 
invasive species, but also non-invasive species 
like Trichophyton indotineae, as little phylogenetic 
studies have been performed for this emerging 
global threat [135]. Although most well-established 
laboratories have the equipment to perform STR 
typing, the costs associated with high resolution gel 
electrophoresis and PCR might still be too high for 
low income countries, which is highly unfortunate 
given that many outbreaks take place there. In the 
near future, a large panel of STR markers amplified 
with PCR followed by NGS to determine the copy 
number could replace gel electrophoresis. Long 
read protocols are currently in development for 
human STR typing which could be adapted to 
fungal species [136]. This would probably also 
allow the easy inclusion of more markers to be 
analyzed and compared, although setting up the 
NGS infrastructure is certainly a challenge.

Another future direction is the inclusion of less 
variable markers like was done for C. auris [30]. 
If only highly variable markers would be included, 
isolates can still be differentiated but cannot be 
assigned to the corresponding clade. For other 
species like C. tropicalis, WGS also demonstrated 
clades that could not be visualized using STR 
genotyping due to overly variable markers [57, 61]. 
With the inclusion of markers with more conserved 
long repeat units, it is possible to assign isolates 
to their corresponding clade. Lastly, we suggest a 
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professional standard, that each newly developed 
STR scheme should include validation by WGS 
on both related and unrelated (global) isolates to 
estimate the discriminatory power, demonstrating 
its merit for (clinical) practice.
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