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Abstract: The mortality rates of invasive fungal infections remain high because of the limited number
of antifungal drugs available and antifungal drug resistance, which can rapidly evolve during treat-
ment. Mutations in key resistance genes such as ERG11 were postulated to be the predominant cause
of antifungal drug resistance in the clinic. However, recent advances in whole genome sequencing
have revealed that there are multiple mechanisms leading to the microevolution of resistance. In
many fungal species, resistance can emerge through ERG11-independent mechanisms and through
the accumulation of mutations in many genes to generate a polygenic resistance phenotype. In
addition, genome sequencing has revealed that full or partial aneuploidy commonly occurs in clin-
ical or microevolved in vitro isolates to confer antifungal resistance. This review will provide an
overview of the mutations known to be selected during the adaptive microevolution of antifungal
drug resistance and focus on how recent advances in genome sequencing technology have enhanced
our understanding of this process.
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1. Introduction

Fungal infections pose an escalating health problem; however, their contribution
to the global burden of disease remains under-recognized. It has been estimated that
1.7 billion people are infected with fungi each year, resulting in 1.5 million deaths annually
from invasive infections [1,2]. Although there are more than 600 species of fungi that
can cause disease in humans, more than 90% of all reported deaths result from invasive
infections with the opportunistic pathogens Cryptococcus neoformans, Candida albicans, As-
pergillus fumigatus and Pneumocystis jirovecii [1,3]. Other species within the Cryptococcus
species complex (C. deneoformans and C. gattii), Candida genera (C. glabrata, C. tropicalis,
C. parapsilosis, C. krusei and C. auris) and Aspergillus genera (A. flavus, A. terreus, A. niger
and A. nidulans) also cause human invasive infections [1,2,4–6]. In addition, moulds in
the Fusarium, Scedosporium, Mucorales and Lomentospora genera can cause life-threatening
invasive infections, which, although rarer, have high mortality, because of high resistance
rates or inherent resistance [7]. Other significant invasive fungal infections are restricted
to endemic regions and are caused by infections with thermally dimorphic pathogenic
species including Coccidioides immitis, Coccidioides posadasii, Blastomyces dermatitidis and
Histoplasma capsulatum (USA); Paracoccidioides brasiliensis and Paracoccidioides lutzii (Brazil);
and Talaromyces marneffei (Southeast Asia) [8–10]. The World Health Organisation (WHO)
has identified C. neoformans, C. albicans, A. fumigatus and C. auris as a critical group of species
requiring priority research development and public health action to improve responses
and prevent the development of antifungal drug resistance [7]. C. glabrata, Histoplasma spp.,
Mucorales, Fusarium spp., C. tropicalis and C. parapsilosis are classified as high priority by the
WHO, and Scedosporium spp., Lomentospora prolificans, Coccidioides spp., C. krusei, C. gattii, T.
marneffei, P. jirovecii and Paracoccidioides spp. are classified as medium priority [7].
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Invasive fungal infections are difficult to treat and result in a high mortality rate, often
surpassing 50% and increasing to up to 90% for some species if treatment is delayed [1,7,11].
The major contributing factors to mortality are the limited number of antifungal drugs avail-
able and antifungal drug resistance, which results in ineffectual treatment or relapse [12–16].
Resistance has been described for every class of antifungal drugs, is common in some drug
classes such as azoles and evolves rapidly during treatment [13].

Fungal cells possessing mutations causing antifungal resistance are selected for in
the clinic and become predominant in the population in a short timeframe in a process
termed adaptive microevolution (Figure 1A). Adaptive microevolution is enhanced by
an increased mutation rate, which provides higher genetic diversity within a population
on which selection can act (Figure 1B). Isolates with elevated mutation rates, termed
mutators, are associated with the enhanced evolution of antifungal resistance [17]. Recent
advances in next-generation sequencing technology have revealed that resistance can
emerge through single mutations in key genes or via the accumulation of mutations in
many genes (polygenic), changes to the transcriptome and aneuploidy (chromosome
duplications). In the presence of an antifungal, fungi can undergo a process termed
heteroresistance, where transient aneuploidy occurs to confer resistance (Figure 1C). If
the aneuploidy becomes permanent, these stable aneuploids are selected for in a clinical
population (Figure 1D). This review will provide an overview of the mutations known to
be selected during the adaptive microevolution of antifungal drug resistance and focus on
how recent advances in technology have enhanced our understanding of this process.
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Figure 1. Adaptive evolution of antifungal resistance. (A). Cells in the population that possess
a mutation resulting in antifungal drug resistance are selected and become predominant in the
population. (B). An elevated mutation rate provides higher genetic diversity within a population on
which selection for antifungal-resistant cells can occur. (C). Transient aneuploidy (heteroresistance)
occurs in the presence of an antifungal to confer resistance. (D). Permanent aneuploidy-conferring
antifungal resistance is selected for in a clinical population. The thick black lines represent schematic
chromosomes, with white lines representing mutations.

2. Antifungal Drugs

The limited numbers of antifungal drugs and the tapered pipeline for the development
of novel antifungals are widely recognised challenges for clinical mycology [1]. Many
antifungal drugs can cause anaphylactic reactions or other life-threatening side effects,
including renal or liver damage, and there has only been a single new class of antifun-
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gal, the echinocandins, released in the last few decades [18,19]. In addition, the use of
antifungal drugs is limited by the type of administration, unfavourable drug interactions,
bioavailability in target tissues and restricted activity [1,19]. There are four main classes
of antifungals used to treat invasive fungal infections: azoles, polyenes, pyrimidine ana-
logues and echinocandins. A fifth class of antifungals, allylamines, is only used for treating
superficial infections [19] (Figure 2).
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Figure 2. Molecular mechanisms of resistance to antifungal drugs. Schematic of the fungal cell
membrane and wall showing the mechanism of action of the five antifungals and the mechanisms of
resistance (5FC: 5-fluorocytosine and 5FU: 5-fluorouracil). Mechanisms common to several different
fungal species are indicated in red (text, arrows or boxes), those specific to A. fumigatus in blue
(text and boxes), to C. neoformans in purple text and to Candida species in green text. The fungal
cell wall comprises chitin (blue), ß-1,3-glucan (light green), ß1,6- glucan (orange), proteins (yellow),
α-1,3-glucan (red) and galactomannans (brown). Transcription factors and proteins that regulate
ergosterol biosynthesis are shown in yellow and orange, respectively. Damage Resistance Protein 1
(Dap1) complex is shown in green.

Azoles are the largest and most widely used class of antifungal agents because of
their broad-spectrum activity and oral administration, which is useful in resource-limited
settings [1,19]. Azole antifungals inhibit the biosynthesis of ergosterol, a crucial component
of the cell membrane, which disrupts fungal growth and replication. Azoles bind the
iron in the active site of the enzyme lanosterol 14 alpha-demethylase, causing a block in
the ergosterol biosynthesis pathway and the accumulation of toxic sterols [19]. Similar
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to azoles, allylamine antifungals target ergosterol biosynthesis by inhibiting an essential
enzyme, in this case, squalene epoxidase, which leads to the accumulation of squalene and
increasing membrane permeability [19,20]. Polyenes are broad-spectrum antifungals that
bind ergosterol in the cell membrane, inducing an extramembranous sterol sponge that
destabilizes the membrane and generates membrane pores, which causes the leakage of
cellular content and death [19,21,22]. However, use is limited by the need for intravenous
administration and severe side effects [19]. 5-fluorocytosine (5-FC) is a pyrimidine analogue
used in synergistic combination with polyene amphotericin B. 5-FC enters the fungal cell via
the cytosine permease enzyme, where it is converted by cytosine deaminase into the active
form, 5-fluorouracil (5-FU). 5-FU can compete with uracil to disrupt RNA and subsequent
protein synthesis and can also inhibit DNA synthesis through the inhibition of thymidylate
synthase. The newest class of broad-spectrum antifungals, echinocandins, inhibit the
synthesis of ß-1,3-glucan in the fungal cell wall, which results in osmotic instability and cell
death [23]. Use is limited because of poor absorption, a short half-life and the requirement
for daily intravenous administration [19].

3. Mutations in Genes Involved in Ergosterol Biosynthesis Confer
Antifungal Resistance

Resistance to azole antifungals is commonly attributed to the selection of mutants that
over-express or alter the ERG11/cyp51A gene encoding the target enzyme of the ergosterol
biosynthesis pathway, lanosterol 14 alpha-demethylase [24–29] (Figure 2). Single-nucleotide
mutations in ERG11 have been shown to lead to resistance in C. albicans, C. glabrata,
C. tropicalis, C. krusei, C. parapsilosis and C. albicans clinical isolates, which typically over-
express ERG11 [24,27,28,30]. C. auris clinical isolates possess ERG11 sequence variants that
account for their intrinsic multi-drug resistance to azoles [28,31]. ERG11 mutations have
also been associated with fluconazole resistance in C. neoformans clinical isolates [32–35].
Mutations in other genes of the ergosterol pathway can also lead to azole resistance but are
less commonly observed. In C. glabrata, the resistance of microevolved strains can occur via
mutations in ERG3 and ERG4 [30]. In C. albicans, mutations in ERG3, ERG2 or ERG6 confer
resistance by preventing the generation of toxic sterol intermediates; however, ERG3A and
ERG3B mutants in A. fumigatus do not [36,37].

In aspergillosis patients where an azole-resistant isolate is obtained through environ-
mental exposure, the most common mechanism resulting in resistance is the duplication of
a 34 bp tandem repeat in the cyp51A (ERG11 homologue) promoter, in combination with a
specific substitution (TR34/L98H) [14,38,39]. This mutation was found to be correlated with
exposure to agricultural azoles and confers pan-azole resistance [39–41]. Agricultural use of
the triazoles tebuconazole and propiconazole to control fungal diseases in plant crops has
increased and results in the persistent contamination of soil, sewage and wastewater in the
environment [40–42]. A recent surveillance study in Vietnam, where the use of fungicides
is widespread and poorly regulated, showed that azole resistance occurs predominantly
in isolates from cultivated soils, and 95.2% of A. fumigatus environmental isolates were
resistant to at least one azole [42].

More pan-azole resistance alleles arising from various alterations to the cyp51A pro-
moter tandem repeat have since been discovered in both the clinic and the environment
in various locations around the world [39,40,43]. A recent study analysing 1190 azole-
resistant A. fumigatus isolates, obtained from the environment from regions all over the
globe, predominately carried the cyp51A TR34/L98H (60.7%) or TR46/Y121F/T289A (15.0%)
alleles [39]. cyp51A mutations that occur during human infection are commonly missense
mutations that prevent the azole from binding to the 14 α-demethylase enzyme azole
target [6,25,40,44].

Genes regulating the transcription of ergosterol biosynthesis genes and ergosterol
production also play a role in azole susceptibility (Figure 2). The sterol regulatory element
binding protein (SREBP) pathway is required for adaptation to hypoxia and sterol home-
ostasis in fungi [45]. Under low oxygen, the SREBP transcription factor in C. neoformans
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(Sre1) and A. fumigatus (SrbA) activates genes required for ergosterol biosynthesis, and
deletion results in increased susceptibility to azole antifungals [46–48]. SrbA has been
shown to bind directly to the tandem repeats in the cyp51A promoter [6,48]. An additional
transcription factor, encoded by atrR, also binds the tandem repeats in the cyp51A promoter
and is required for normal tolerance to azoles [49]. The homologous gene to SRE1/srbA in
C. albicans, CPH2, is not necessary for ergosterol biosynthesis [50]. Rather, in C. albicans,
a different transcription factor, Upc2, regulates the expression of ergosterol biosynthesis
genes [51]. The disruption of UPC2 in C. albicans increases azole susceptibility and over-
expression or activating mutations cause azole resistance in vitro [51,52]. In C. albicans
clinical isolates, gain-of-function UPC2 mutants contribute to the increased expression of
ERG11 and fluconazole resistance [53–56]. The deletion of UPC2 in C. glabrata decreases the
expression of ergosterol biosynthesis genes [57].

cyp51A expression in A. fumigatus is also regulated by a transcriptional complex
containing HapB, HapC and HapE and an additional factor, HapX [38]. A mutation in hapE
was initially found in an azole-resistant clinical isolate via whole genome sequencing [44].
The deletion of HapB, HapC, HapE and HapX and the expression of HapEP88L result in
increased resistance to azoles [38]. HMG CoA reductase encoded by hmg1 is a sterol-
sensing protein bound to the endoplasmic reticulum that initiates ergosterol biosynthesis.
hmg1 mutations generated in the sterol-sensing domain or identified in clinical isolates
result in altered sterol levels and azole resistance [58,59]. Mutations in the NtcA and
NtcB subunits of the Negative co-factor two (Ntc2) complex, which regulates ergosterol
biosynthesis, also result in pan-azole resistance [60]. Mutations in subunits of the Damage
Resistance Protein 1 (Dap1) complex, which regulates cyp51a and Erg5 function, also result
in resistance [61].

Similar to azoles, allylamine antifungals target ergosterol biosynthesis [20] (Figure 2).
Terbinafine is an allylamine antifungal commonly used to treat dermatophyte infections.
Mutations in the gene encoding the target enzyme (ERG1) confer resistance to terbinafine
in clinical isolates of Trichophyton interdigitale and Trichophyton rubrum [62,63]. The intro-
duction of the equivalent mutation in A. fumigatus and C. albicans also confers terbinafine
resistance [62,64].

4. The Overexpression of Genes Encoding Efflux Pumps Confers Azole Resistance

The overexpression of MDR1 genes encoding efflux pumps of the major facilitator
superfamily (MFS) or CDR genes encoding efflux pumps of the ATP-binding cassette (ABC)
superfamily occurs in azole-resistant clinical isolates of C. albicans, C. parapsilosis, C. krusei,
C. auris and C. glabrata [16,65,66] (Figure 2). Long-term therapy of oropharyngeal candidia-
sis in AIDS patients results in the constitutive expression of the CDR1, CDR2 and MDR1
genes [67,68]. The transcription factors that control the expression of efflux pumps in
C. albicans and C. parapsilosis are Tac1, Mrr1 and Upc1 [69–71]. Another transcription factor,
Cap1, cooperates with Mrr1 in C. albicans [69]. Cph1 and Mcm1 are additional negative and
positive regulators of MDR1 expression, respectively [72,73]. C. albicans and C. parapsilosis
gain-of-function mutations in TAC1 result in the constitutive expression of CDR1 and CDR2
in azole-resistant clinical isolates and in vitro [29,69–71,74]. Likewise, MRR1, UPC1 and
CAP1 gain-of-function mutations result in the overexpression of MDR1 in azole-resistant
clinical isolates (MRR1 and UPC1) or in vitro (CAP1) [29,53,69–71,75]. Mutations in TAC1
and UPC1 and the overexpression of CDR1 are also responsible for azole resistance in
C. auris [76,77].

Almost all azole-resistant C. glabrata clinical isolates and those from in vitro evolution
experiments possess activating mutations in the PDR1 gene, which encodes a transcription
factor that induces the expression of CDR1 [27,30,78–81]. Pdr1 is regulated in part by
the Hst1 deacetylase, which regulates gene expression by interacting with the mediator
complex [81]. The deletion of HST1 and components of the mediator complex result in
fluconazole resistance [82,83].
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In C. neoformans and C. gattii, the expression of the ABC and MFS transporter genes
is induced upon treatment with fluconazole [84,85]. S. cerevisiae-expressing C. gattii AFR1,
AFR2 and MDR1 lead to higher resistance to fluconazole [84]. AFR1 is overexpressed
in a fluconazole-resistant C. neoformans clinical isolate, and mice infected with an AFR1
mutant respond better to treatment with fluconazole [86,87]. AFR1 overexpression in a
susceptible strain in vitro or gene deletion results in increased fluconazole resistance or
susceptibility, respectively [85,87]. The expression of AFR1 is regulated by the CRZ1 and
yap1 transcription factors [85].

The overexpression of efflux pumps encoded by atrI, cdr1B and mdr1 in A. fumigatus,
occurs in azole-resistant clinical isolates and the overexpression of atrF, Afumdr1, Afumdr3
and Afumdr4 in vitro results in azole resistance [6]. Mutations in genes encoding transcrip-
tion factors atrR and yap1, which regulate the expression of cdr1B and atrF, respectively,
also confer resistance [88,89].

5. Mutations in Genes Encoding Glucan Synthases Result in Resistance to
Echinocandin Antifungals

Resistance to echinocandins arises from mutations in the genes encoding the cat-
alytic subunits of the target enzyme, 1,3-ß-D-glucan synthase complex, encoded by FKS
genes (Figure 2). In C. albicans, C. krusei, C. auris and C. tropicalis, mutations specifically
in FKS1 cause resistance [14,28,29,31,90,91]. Single-residue substitutions are commonly
located in two FKS1 hot spots in C. albicans at amino acids 641–649 and 1357–1364 [92].
However, additional resistance mechanisms, yet to be identified, must also exist, as most
echinocandin-resistant Candida isolates lack mutations within FKS1 [93]. In C. glabrata,
resistance can be conferred by mutations in either FKS1 or FKS2 [14,30]. C. parapsilosis
and Candida guilliermondii are intrinsically resistant to echinocandins because of a single
nucleotide polymorphism that occurs in the FKS1 hotspot that confers resistance in other
Candida species [94].

Echinocandin resistance in A. fumigatus clinical isolates is rare. One mutation in FKS1
has been found in an A. fumigatus echinocandin-resistant clinical isolate after micafungin
treatment failure [95].

6. Resistance to Polyenes and the Pyrimidine Analogue 5-FC

Amphotericin B resistance is associated with reduced fitness, so, as a consequence,
clinical resistance is rare despite over 50 years of use as a monotherapy to treat invasive
infections [96,97]. Similar to azoles, resistance can arise through mutations in the ERG
genes of the ergosterol biosynthesis pathway. Missense mutations in ERG3 and ERG6 can
confer amphotericin B resistance in C. glabrata and C. auris [98–100]. However, most Candida
amphotericin B-resistant strains have not been characterised at the gene level but rather
by detecting changes in the sterol composition of membranes. The only amphotericin
B-resistant C. neoformans isolate carries a mutation in ERG2 [101].

5-FC is used only in combination with amphotericin B, as resistance to 5-FC emerges
frequently. Mutations in FCY1 and FCY2, permeases required for 5-FC transport, and in
FUR1, a gene that encodes a uracil phosphoribosyltransferase that converts 5-FC into toxic
5-FU, confer resistance to 5-FC in C. albicans, C. glabrata, C. auris and C. neoformans [31,102].
Mutations in a gene encoding an enzyme that converts UDP-glucuronic acid into UDP-
xylose (UXS1), which results in altered nucleotide metabolism, also confers resistance in
C. neoformans by suppressing the toxicity of 5-FC and its derivative, 5-FU [103] (Figure 2).

7. Mutation Rate Enhances the Microevolution of Drug Resistance

The microevolution of antifungal resistance is significantly increased by an elevated
mutation rate, which bestows the fungal population with higher genetic diversity upon
which selection can act [17]. Strains that exhibit an elevated mutation rate, termed mutators,
exhibit the rapid emergence of azole resistance in vitro in C. neoformans, Cryptococcus
deuterogattii, C. glabrata and A. fumigatus [104–107]. In clinical populations, the most
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frequently mutated gene giving rise to a mutator phenotype is the MSH2 gene of the
DNA mismatch repair (MMR) pathway, although an MLH1 variant (also in the MMR
pathway) has been found in C. auris [108]. Non-synonymous variation in MSH2 has
been discovered in clinical populations of C. deuterogattii, C. neoformans, C. glabrata and
A. fumigatus [12,104–107,109–114]. However, the exact prevalence of MSH2 mutators in
clinical populations and their clinical relevance remains controversial, as a correlation with
antifungal resistance is often not found. Challenges in measuring mutation rates have led
to many studies reporting sequence variance without confirming an increased mutation
rate, and some MSH2 alleles in C. glabrata previously called mutators have subsequently
been shown not to result in a mutator phenotype [105,111–115]. Nevertheless, mutations
in MSH2 are strongly associated with the emergence of resistance to azoles, polyenes,
pyrimidine analogues and echinocandins in vitro [104–107]. In C. glabrata, resistance to
azoles, amphotericin B and echinocandins in msh2∆ mutants can arise from mutations
in PDR1 (azoles), ERG6 (amphotericin B), FKS1 and FKS2 (echinocandins) [105]. Whole
genome sequencing of 5-FC-resistant msh2∆ mutants in C. deuterogattii revealed mutations
in FUR1, FCY2 and UXS1 [103]. Whole genome sequencing of azole and amphotericin
B-resistant msh2∆ mutants in C. neoformans revealed polygenic resistance, where mutations
accumulate in genes that alter stress signalling, cellular efflux, membrane trafficking and
epigenetic modification [116].

8. Whole Genome Sequencing Reveals That the Microevolution of Drug Resistance
Can Be Polygenic

Although mutations in single key genes such as ERG11 and PDR1 appear to be the pre-
dominant mode of azole resistance in C. albicans and C. glabrata, respectively, this is likely not
the case in other pathogenic fungi, where resistance is also driven by ERG11-independent
mechanisms [27,117]. Between 50 and 70% of fluconazole-resistant C. neoformans clinical
isolates lack any mutations in ERG11 [26,32–35]. A recent study of the C. gattii Pacific North-
west outbreak also concluded that neither the overexpression of ERG11 nor mutations
within the gene were responsible for the resistance to fluconazole in these isolates [118]. In
addition, greater than 50% of A. fumigatus azole-resistant clinical isolates do not possess
mutations in the regulatory or coding regions of cyp51A [6,39,65,119,120]. Recent advances
in next-generation sequencing technology have enabled more studies utilizing mutational
profiling to follow the emergence of antifungal drug resistance. Genome sequencing of
clinical isolates over the course of infection has been performed, as well as of resistant
isolates generated from in vitro microevolution experiments, where isolates are passaged
in a laboratory in low concentrations of antifungals. These types of studies have revealed
that resistance likely emerges through the accumulation of mutations in many genes (e.g.,
a polygenic phenotype).

An analysis of the mutational profiles of C. albicans clinical isolates from oral candidia-
sis patients revealed mutations in genes required for filamentous growth, cell adhesion,
biofilm formation, cell cycle and stress, drug responses and carbohydrate binding, as well
as changes in ploidy [121]. Transcriptomic analysis of the evolution of a C. glabrata clinical
isolate over time from azole susceptibility to posaconazole resistance and clotrimazole
resistance to fluconazole/voriconazole resistance showed that only the population with
resistance to all azoles had a gain-of-function PDR1 mutation, whereas intermediate strains
possessed alternative resistance mechanisms [122]. In C. auris, the mutational spectrum,
coupled with an analysis of the transcriptome of fluconazole-resistant in vitro microevolved
strains, suggests mutations commonly accumulate in genes encoding transcription factors
(TAC1B, UPC2, ZCF18 and ZCF22), but there are a large number of different mechanisms
that promote drug resistance, including changes in ploidy and multiple pathways leading
to resistance, including efflux transporter upregulation and transcriptional changes in
ribosome biogenesis, RNA metabolism and sugar transport [77,108,123].

Whole genome sequencing of in vitro microevolved azole-resistant msh2 (mutator)
isolates in C. neoformans has shown aneuploidy and mutations accumulating in the genes of
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some of the same biological processes shown by transcriptomic studies to be differentially
expressed in response to azole exposure, such as stress signalling, transmembrane transport,
epigenetic modification, translation, transcription and carbohydrate metabolism [116,124].
Azole-resistant microevolved strains accumulated mutations in genes that encode the
components required for membrane trafficking (KES1 and ALP3) and epigenetic modifi-
cation (RLF2, EAF1, EAF6, YAF9 and SWC4), and the deletion of these genes resulted in
fluconazole resistance [116].

In vitro microevolution experiments on voriconazole resistance in A. fumigatus showed
resistant strains did not possess mutations in cyp51A, hmg1 or hapE, but transcriptomic
analysis of these strains showed resistance was likely due to the overexpression of tran-
scription factor asg1, which has been shown to regulate the expression of several ABC and
MFS transporter genes and genes of the ergosterol biosynthesis pathway [125].

9. Heteroresistance Caused by Transient Aneuploidy and Permanent Aneuploidies in
Clinical Isolates

Recent advances in whole genome sequencing and mutational profiling have also
revealed that large-scale alterations to the genome, such as changes in ploidy (the number
of chromosome sets), are a common mechanism utilized by fungi to adapt to environ-
mental stress and generate azole resistance [121,126–128]. Exposure to azole antifungals
has been shown to result in transient aneuploidy in C. neoformans in a process called het-
eroresistance [129,130]. Upon exposure to azoles, one or more aneuploidies (chromosome
duplications) rapidly develop; however, normal ploidy is re-established when the azole is
removed because of reduced fitness [127,129,130]. In response to increasing fluconazole
concentrations in C. neoformans, chromosome 1 containing ERG11 and AFR1 is duplicated,
followed by the subsequent duplication of chromosomes 4, 10 and 14 [127]. The transient
aneuploidy of chromosome 1 is concomitant with increased fluconazole MIC and clinical
relapse in cryptococcal meningitis patients [131].

In addition, whole genome sequencing has revealed many antifungal-resistant clinical
isolates possess permanent aneuploidies. C. neoformans clinical isolates exposed to azoles
commonly have disomy of chromosome 1, which results in azole resistance [127,131–133].
Exposure to fluconazole in vitro rapidly leads to entire or segmental disomy of chromosome
1 (92% of isolates) and chromosome 4 (36%) in combination with other disomies [134]. Ane-
uploidy of other chromosomes (2, 4, 6, 8–10, 12–14) has also been observed [12,131,135–139].
One study showed that 8.5% of clinical isolates contain a duplicated chromosome (com-
monly 1, 9, 12 or 14), but only 4% of these aneuploid isolates displayed azole resis-
tance [139]. Partial and full chromosomal duplications in clinical populations reduce
fitness in vivo [139]. In total, 43.75% (7/16) of azole-resistant A. fumigatus chronic pul-
monary aspergillosis clinical isolates, which do not possess a mutation in cyp51A, display
aneuploidy of chromosomal regions containing genes associated with azole resistance,
cyp51A, cyp51B or cyp51ec, as well as those encoding MFS and ABC transporters and
transcription factors [120].

In C. albicans clinical isolates, azole resistance can arise from large genome rearrange-
ments, including the translocations of chromosomal arms; the duplication of the chromoso-
mal region of the left arm of chr5 containing ERG11 and TAC1 to produce an isochromosome
(i(5L)); trisomies of chr3, chr4, chr5 or chr7; and loss-of-heterozygosity in the chromosomal
regions containing TAC1 (chr5) and MRR1 (chr3); and the formation of new chromosomes
via the duplication of segments containing a centromere and the addition of telomeric
ends [27,75,121,126,140–148]. Long repeat sequences drive the plasticity of the C. albi-
cans genome; for example, the recombination of a long-inverted repeat sequence at the
centromere of chr5 is required for the formation of i(5L) [146,149]. Resistance can be at-
tributed to the increased gene dosage of CDR1, CDR2, CRZ1 (transcription factor) and
MRR1 on chr3 and TAC1 or ERG11 on chr5 [146]. One study predicted that at least 50%
of fluconazole-resistant isolates are aneuploid [140]. Recently, a study by [150] showed
that different concentrations of fluconazole can select for different genotypic outcomes.
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Lineages of C. albicans that evolved in fluconazole concentrations close to the MIC50 of their
ancestor acquired aneuploidies and copy number variations, whereas lineages evolved
above the ancestral MIC50 acquired mutational changes [150]. In C. albicans, resistance
to posaconazole generated through in vitro experimental evolution also results in aneu-
ploidy and cross-tolerance to fluconazole [145]. Loss of chr5 or combined trisomy of the
right arm and monosomy of the left arm of chr5 also leads to caspofungin resistance in
C. albicans [151,152].

Azole-resistant strains selected directly in vitro or during microevolution experiments
also gain permanent aneuploidies [153]. A. flavus strains, selected for voriconazole re-
sistance, contain duplications of chromosome 8 or a segmental duplication of chromo-
some 3, which contains atrA but no cyp51A mutations [154]. Numerous recent studies on
C. auris that sequenced and compared the genomes of parental fluconazole-susceptible
strains and experimentally evolved fluconazole-resistant strains showed the rapid gen-
eration of the aneuploidies of chromosome 5 (which contains the regulator TAC1B) or 3,
segmental aneuploidy of chromosome 1 (contains ERG11), loss of subtelomeric regions,
karyotype alterations and the generation of supernumerary chromosomes (centromere-
inclusive chromosomal duplications of segments of chromosome 5) [77,108,123,155]. Aneu-
ploids are also commonly found in microevoution experiments on fluconazole resistance
in C. glabrata [30]. Fluconazole-resistant C. neoformans MSH2 strains possess permanent
aneuploidies of chromosomes 1 and 4 [116].

10. Conclusions

There is a critical need for the development of novel antifungals given the restricted
number available, limitations on use and the emergence of resistance. Resistance is rapidly
becoming an important issue that will worsen without the introduction of new antifungals
for use in the clinic. Mutations in key resistance genes such as ERG11 were once thought
to be the predominant cause of antifungal drug resistance. However, the recent use of
whole genome sequencing has shown that the microevolution of resistance is far more
complicated, and there is still a long way to go to understand this process. Although
mutations in single genes such as ERG11 and PDR1 are the predominant cause of resistance
in Candida species, a large proportion of clinical isolates of other fungal species lack ERG11-
dependent resistance mechanisms and instead possess accumulated mutations in many
genes in order to generate a polygenic resistance phenotype. Currently, it is impossible
to determine the precise contribution, if any, of every mutational change observed in the
genomes of resistant strains. Sexual outcrossing is not possible for most pathogenic fungi,
meaning that the association between mutations and resistance phenotypes is difficult to
analyse. Their phenotypic contribution to resistance could be confirmed by regenerating the
mutation in an antifungal-susceptible strain using gene editing technology; however, this
process would be unrealistic to perform for such a large number of mutations. In addition,
these complex mutational profiles are coupled with highly plastic genomes—where aneu-
ploidy is rapidly generated either transiently or permanently—and transcriptional changes,
which must be separated from adaptive responses. Understanding the many factors con-
tributing to the emergence of resistance is crucial for the development of effective future
treatment strategies.
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