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Abstract
Purpose of the Review  Azole-resistant Aspergillus fumigatus is an emerging clinical problem. Resistance can develop both 
with clinical exposure and with environmental exposure to azole and azole-like fungicides used against phytopathogens. 
Here, our current understanding of the epidemiology and prevalence of this emerging problem is reviewed.
Recent Findings  Azole-resistant A. fumigatus is now a worldwide problem, as it has been documented in clinical and envi-
ronmental samples on all but one continent. Although Europe has been the center of this issue, hotspots are now emerging 
in Asia. However, there are several limitations to our current understanding of the extent of this problem, including issues 
with surveillance strategies and our reliance on phenotypic methods for detecting resistance.
Summary  Azole-resistant A. fumigatus is an emerging issue both clinically and in the environment that requires greater 
attention in order to preserve this very useful class of antifungal agents for the treatment of aspergillosis.
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Introduction

Aspergillus species are fungi that are ubiquitous in nature 
and feed on dead or decaying organic material. In certain 
patient populations, these fungi are able to cause a myriad 
of conditions, including allergic bronchopulmonary asper-
gillosis, sinusitis, chronic pulmonary aspergillosis, aspergil-
lomas, and acute invasive aspergillosis, with the respiratory 
route being the most common means of entry. Although over 
two hundred individual species within this genus have been 
described, the most common species cultured from humans 
include A. fumigatus, A. flavus, A. terreus, and A. niger, with 
A. fumigatus being the most prevalent [1–3]. In individuals 
who require treatment of infections caused by Aspergillus 
species, the azole antifungals itraconazole, voriconazole, 
posaconazole, and isavuconazole are commonly used due 
to their in vitro activity against Aspergillus species, efficacy 
in clinical studies, and ability to be administered orally, 

which is important given the lengthy durations of therapy 
that are often required in patients with aspergillosis. How-
ever, as with most microbes, antifungal resistance in these 
fungi can develop with exposure to these agents. Prior to 
the late 1990s, azole-resistant A. fumigatus was not seen as 
a clinical problem. However, over the last 15 years, this situ-
ation has changed, and numerous studies have documented 
azole resistance in countries throughout the world, both in 
clinical and environmental specimens. Clinically, this is 
important as azole-resistant invasive aspergillosis has been 
associated with increased mortality in highly immunocom-
promised individuals, especially in ICU settings [4–6]. Here, 
the epidemiology of azole-resistant A. fumigatus is reviewed 
focusing on new information regarding the prevalence of this 
emerging issue in clinical and environmental isolates from 
countries in different geographic areas of the world.

Early History of Azole Resistance in Aspergillus 
fumigatus

The first clinical cases of azole-resistant A. fumigatus began 
to appear in the literature in the late 1990s, with reports from 
the USA (California) and Sweden [7, 8]. However, the cases 
from California were retrospective evaluations of isolates 
that had been cultured from patients with chronic pulmonary 
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aspergillosis who had received long-term azole therapy in the 
1980s [8]. Thus, resistance had developed earlier than when 
first reported. Following these early reports, additional descrip-
tions of clinical failures associated with microbiological resist-
ance continued to emerge. For example, in the UK, the rate 
of azole-resistant A. fumigatus cultured primarily in patients 
who received long-term azole therapy for chronic aspergillosis 
and submitted to the Mycology Reference Centre Manchester 
increased from 5 to 7% for the period of 2005 to 2007 up to 
20% in 2009 [9, 10]. In the Netherlands, over a 14-year period, 
from 1994 to 2007, itraconazole-resistant A. fumigatus was 
found in 32 of 1219 patients, and the annual prevalence ranged 
from 1.7% to 6% [11]. Interestingly, in these early studies from 
the UK and the Netherlands, resistance was not detected until 
after 1999 [10, 11]. Since then, numerous studies from institu-
tions in countries around the world have reported azole resist-
ance in clinical isolates of A. fumigatus [12].

Many of these early clinical reports were in patients who 
had received long-term azole therapy due to chronic aspergillo-
sis. Azole resistance with long-term patient exposure is known 
to occur in individuals with allergic bronchopulmonary and 
chronic pulmonary aspergillosis, those receiving long-term 
antifungal prophylaxis, individuals with pre-existing lung cavi-
ties (e.g., due to tuberculosis or sarcoidosis), and cystic fibrosis 
patients [12–14]. Numerous spontaneous mutations can occur 
during asexual sporulation; thus, these individuals may har-
bor several strains of A. fumigatus that are genetically distinct, 
including those that are phenotypically susceptible and resistant 
to different antifungals [9, 10, 13, 15]. These nonsynonymous 
point mutations that can develop with long-term azole exposure 
occur within the CYP51A gene, which encodes the Cyp51a 
enzyme (also known as lanosterol 14α-demethylase, the target 
of the azoles) [16–18, 19•]. The development of resistance in 
patients with long-term exposure to azoles is consistent with 
what is known about azole resistance development in different 
fungi, including Candida species. However, in 2007, reports 
began to emerge from the Netherlands of multiple-azole–resist-
ant A. fumigatus invasive aspergillosis in azole-naïve patients 
[20]. This resistance was caused by a novel mechanism that 
consisted of a nonsynonymous mutation within the CYP51A 
gene along with a tandem repeat in the promoter region of 
this gene (i.e., TR34/L98H). Because this occurred in patients 
without previous exposure to azoles, it was postulated that 
resistance may have developed with environmental exposure 
to azoles used in agriculture [20, 21].

Mechanisms of Azole Resistance in Aspergillus 
fumigatus

CYP51A mediated mechanisms of resistance

CYP51A-mediated mechanisms of resistance have been 
broadly categorized as patient-exposure or environmental 

exposure. As briefly described above, the patient expo-
sure mechanisms involve nonsynonymous point mutations 
within the CYP51A gene that can occur during asexual 
sporulation [13, 19•]. These mutations can lead to amino 
acid changes within the Cyp51A enzyme, which in turn 
leads to modifications to the channels by which the azoles 
are able to access the active site and inhibit the enzyme 
[17, 22]. Amino acid positions commonly associated with 
patient exposure include G54 (posaconazole and itra-
conazole resistance), G138 (voriconazole, isavuconazole, 
and itraconazole resistance), M220 (itraconazole resist-
ance with elevations in MIC values for the other mold-
active azoles), and G448 (voriconazole, isavuconazole, 
and itraconazole) [19•, 22]. Several other less common 
mutations within Cyp51a have also been reported to cause 
azole resistance. Common features of patients from which 
isolates with these types of mutations are cultured include 
those with long-term azole exposure and the presence of 
pulmonary cavities [15].

Mutations associated with azole resistance following 
environmental exposure to azole and azole-like com-
pounds (i.e., demethylase inhibitors) include nonsynon-
ymous mutations within CYP51A that cause amino acid 
substitutions within the enzyme coupled with tandem 
base pair repeats within the promoter region of the gene. 
Azoles and azole-like fungicides are used in agriculture 
and horticulture against phytopathogens, and in various 
products to prevent rot in wood and other materials [23]. 
Although A. fumigatus is not a phytopathogen, it is ubiqui-
tous in the environment. In addition, sexual or parasexual 
reproduction that can occur in the environment where 
extensive genetic reshuffling can occur through recom-
bination may also play a role in resistance development 
[13, 15]. The most common mechanisms associated with 
environmental exposure that have been described include 
TR34/L98H (pan-azole resistance) and TR46/Y121F/
T289A (voriconazole and isavuconazole resistance and 
attenuation of posaconazole and itraconazole susceptibil-
ity) [19•]. These tandem repeats are bound by transcrip-
tion factors that increase the transcription of the gene so 
that more enzymes are produced [19•, 22]. For example, 
increased binding of the transcriptional regulator SrbA 
to the 34 base pair repeat leads to increased expression 
of the gene and also blocks binding of the transcriptional 
repressor CCAAT-DNA binding complex [19•, 24, 25]. 
Other reported mutations associated with environmen-
tal exposure include those with variations in the number 
repeat duplications (i.e., triplication of TR34 and TR46) 
[15]. Interestingly, an isolate with an increased length 
of the repeat in the promoter region (i.e., TR120) along 
with other mutations within Cyp51A was cultured from 
a patient with long-term azole exposure due to chronic 
pulmonary aspergillosis, raising the possibility of in vivo 
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acquisition of this mechanism rather than through environ-
mental exposure [26]. It should also be noted that muta-
tions leading to a G54E codon change within Cyp51A have 
also been documented in environmental isolates from dif-
ferent countries [27••, 28]. Thus, as noted by Buil et al., 
the boundaries between patient and environmental routes 
of triazole resistance selection are fading [15]. Interest-
ingly, one study from the Netherlands that included 15 
adult cystic fibrosis patients known to be colonized with 
A. fumigatus and collected sputum samples and cough 
plates following spirometry reported that A. fumigatus 
was able to be cultured from both the sputum and cough 
samples in some patients [29•]. This raises the possibility 
of aerosolized transmission of A. fumigatus from patient-
to-patient and from patient-to-environment. Similarly, a 
report from France that used electrostatic dustfall collec-
tors to monitor indoor airborne fungi in an ICU setting 
identified a patient’s airways as the source of A. fumigatus 
within two separate rooms [30].

Non‑CYP51A mediated mechanisms of resistance

However, not all phenotypically resistant isolates have been 
found to harbor CYP51A mutations, and other mechanisms 
of azole resistance are now known to occur in A. fumiga-
tus, although their prevalence and contributions to clinical 
failures are not well understood. These include upregula-
tion of CYP51B, the gene that encodes a second enzyme, 
Cyp51B, involved in ergosterol biosynthesis; overexpression 
of efflux pump genes, including members of the major facili-
tator (MFS) and ATP-binding cassette (ABC) superfamilies; 
gain-of-function mutations in transcription factors, such as 
the P88L substitution in the CCAAT-binding transcription 
factor HapE, which results in de-repression of CYP51A 
transcription; and mutations in the HMG1 gene that affect a 
rate-limiting enzyme in the ergosterol biosynthetic pathway 
termed HMG-CoA reductase [19•, 31].

In most studies, TR34/L98H has been the predominant 
mechanism of resistant detected in both clinical and environ-
mental cultures of A. fumigatus [14, 32, 33••]. However, the 
true prevalence of this mechanism and other mechanisms of 
resistance of azole resistance in patients with aspergillosis is 
most likely underestimated. Cultures for filamentous fungi 
suffer from poor sensitivity [34••, 35]; thus, most patients 
with invasive aspergillosis are culture negative [15]. There-
fore, the detection of antifungal resistance by phenotypic 
means and the subsequent determination of the mechanism 
of resistance are not possible. Although there are commer-
cially available assays in some countries for the detection 
of common Aspergillus species and also the detection of 
TR34/L98H and/or TR46/Y121F/T289A mutations in direct 
specimens (AsperGenius, PathoNostics, the Netherlands, 
MycoGENIE, Ademtech, France, Fungiplex, Aspergillus 

Azole-R, Bruker Daltonics GmbH, Germany), they have not 
received regulatory clearance for clinical use in other coun-
tries, including the USA. Furthermore, as previously noted, 
between 15 and 50% of phenotypically resistant A. fumiga-
tus, isolates have been reported to be CYP51A wild-type [9, 
10, 15, 36, 37]. Thus, even if these commercial assays were 
more widely available, infections caused by strains harbor-
ing CYP51A-independent mechanisms of resistance would 
still be missed.

Prevalence of Azole Resistant Aspergillus fumigatus

Azole-resistant A. fumigatus in clinical and environmental 
settings is now a worldwide issue (Fig. 1). Unfortunately, 
the true clinical prevalence of azole-resistant A. fumigatus is 
unknown. In an early prospective, multicenter surveillance 
study conducted over 2 years between 2009 and 2011 that 
included 3788 isolates collected from 1450 patients at 22 
centers in 19 countries, including Australia, North Amer-
ica, South America, and several European countries, the 
overall prevalence of azole-resistant A. fumigatus was 3.2% 
[32]. However, this rate differed markedly between centers, 
ranging from 0 to 26.1%, and resistance was widespread in 
Europe. The predominant mechanism of resistance identified 
was TR34/L98H (48.8%). Of the 1450 patients from whom 
A. fumigatus was cultured; 353 were known to have asper-
gillosis, including 195 with invasive disease; and 158 with 
known noninvasive disease, including chronic pulmonary 
aspergillosis/bronchitis, allergic bronchopulmonary asper-
gillosis, and aspergillomas. Similarly, an international sur-
veillance study (ARTEMIS Global Surveillance Study) that 
included 497 A. fumigatus isolates from 62 medical centers 
between 2008 and 2009 found 29 isolates (5.8%) with azole 
MICs above the established epidemiological cut-off values 
(i.e., non-wild-type azole MICs) [37]. Twenty-four of these 
isolates with elevated azole MICs came from different medi-
cal centers in one province in China, two from the Czech 
Republic, and one each from the USA, Brazil, and Portugal. 
Eight of these isolates harbored the TR34/L98H mutation, 
with each of these coming from China, representing the first 
time this mechanism of resistance had been reported in this 
country and outside of Europe. Recently, another large inter-
national surveillance study (SENTRY Antimicrobial Sur-
veillance Program) that included 1263 A. fumigatus clinical 
isolates between 2010 and 2017, with the majority coming 
from North America and Europe, reported overall low rates 
of non-wild-type A. fumigatus, ranging from 0.6 to 1.3% 
for itraconazole, 0.9 to 6.3% for posaconazole, and 0.4 to 
1.1% for voriconazole [38]. The frequency of A. fumigatus 
isolates with non-wildtype azole MICs steadily increased in 
Europe over this timeframe but remained relatively constant 
in the Asia–Pacific, North American, and Latin American 
regions. Unfortunately, most studies have been from single 
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centers that often describe a single patient population or 
have included a limited number of institutions within a sin-
gle country. Despite the lack of recent multicenter prospec-
tive studies, data has emerged regarding the reach of azole-
resistant A. fumigatus in different parts of the world, both in 
clinical and environmental samples.

Europe

The issue of azole-resistant A. fumigatus in both clinical 
and environmental strains has been well documented in 
Europe. As noted previously, institutions in the UK and the 
Netherlands quickly became hot spots for azole-resistant 
clinical isolates, and the first reports of such resistance in 
azole-naïve patients and the isolates from the environment 
that harbored the TR34/L98H mutation were described in 
the Netherlands [20]. This was soon followed by descrip-
tions of clinical and environmental isolates that contained 
the TR46/Y121F/T289A mutation [39, 40]. Overall, the 
prevalence differs from country to country within Europe, 
with rates of 0.6 up to 28% depending upon the study and 
the country [3, 9, 10, 32, 39, 41–48]. There can also be 
marked fluctuations over time. Over a 23-year period from 
1994 to 2016 at one medical center in the Netherlands, the 
overall frequency of resistance was 4.2% [49]. However, 
this varied markedly between different periods, with a fre-
quency of azole-resistant A. fumigatus as low as 0.79% 
between 1996 and 2001 and up to a high of 7.17% between 
2007 and 2011. The clinical prevalence has also been 
reported to differ between institutions within the same 

countries and different patient populations. For example, 
several studies from Europe have reported elevated rates of 
azole-resistant A. fumigatus cultured from cystic fibrosis 
patients, which have ranged from 3.5 to 8.2%, depend-
ing upon the country [50–52]. However, rates as high as 
9.1% were reported in one center in Germany 9.1%, and up 
to 20% in cystic fibrosis patients who had previous azole 
exposure at one center in France [51, 53].

Work from the UK has also demonstrated that the preva-
lence of azole-resistant isolates in the environment can 
differ markedly between different types of locations. In a 
study that sampled soils across southern England, the pres-
ence of azole-resistant A. fumigatus was detected in 6.7% 
of the total samples, but was markedly higher in those col-
lected from urban centers (13.8%), including flower beds 
around hospitals and gardens, compared to just 1.1% in rural 
locations [54]. Similar findings have also been reported in 
Mexico, Vietnam, and India [55, 56••, 57]. One study from 
the Netherlands recently identified three environmental 
hotspots, including flower bulb waste, green waste material 
(organic waste material originating from landscaping), and 
wood chippings, all of which contained high counts of total 
and resistant A. fumigatus spores and trace amounts of azole 
fungicides [58].

North America

In North America, including Canada, Mexico, and the USA, 
the rate of azole-resistant A. fumigatus appears to be lower 
than that reported in parts of Europe, such as the UK and 

Fig. 1   Map showing many of the countries (in green) where multiple azole-resistant A. fumigatus isolates have been isolated in clinical and/or 
environmental settings in surveillance or point prevalence studies, including those with TR34/L98H and TR46/Y121F/T289A mutations
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the Netherlands. An early study that included 274 Aspergil-
lus isolates collected from transplant recipients in the USA 
with proven or probably invasive aspergillosis reported 
azole resistance in 10 isolates (3.6%) [1]. However, resist-
ance was found in only 1 of 181 A. fumigatus isolates, with 
the remaining being non-fumigatus Aspergillus species, 
including 5 A. calidoustus isolates, a species known to have 
reduced susceptibility to the azoles [59]. The US Centers for 
Disease Control and Prevention (CDC) conducted a passive 
surveillance study between September 2011 and September 
2013, which included 1026 clinical A. fumigatus isolates 
[60]. Fifty-one isolates (4.9%) had an elevated itraconazole 
MIC value, of which 18 had a mutation within CYP51A. 
Interestingly, no TR34/L98H or TR46/Y121F/T289A muta-
tions were found. However, a retrospective study of clini-
cal A. fumigatus isolates received by a reference laboratory 
from institutions across the USA did identify two strains 
with TR34/L98H and two with TR46/Y121F/T289A muta-
tions, with the earliest of these cultured from a patient in 
2008 [61]. A subsequent passive surveillance study con-
ducted by the CDC from 2015 to 2017 reported that 1.4% 
of A. fumigatus isolates had elevated azole MICs, with 5 
isolates being identified as having the TR34/L98H mutation 
[62]. Recently, results from a large surveillance study of over 
2000 A. fumigatus clinical isolates collected from US insti-
tutions over a 52-month period (October 2015 to January 
2020) was published [36]. Overall, the percentage of isolates 
classified as either resistant or non-wildtype to the azoles 
fluctuated between 3.33 and 6.58%, but remained relatively 
steady over this timeframe. Seven additional isolates har-
boring the TR34/L98H and 7 with the TR46/Y121F/T289A 
mutation were identified. Isolates containing these mutations 
have also now been identified in environmental samples in 
the USA. In an environmental sampling study conducted 
in 2015 in four separate peanut fields in Georgia that had 
been treated with azole fungicides, 38 of 200 A. fumigatus 
isolates (19%) were found to be itraconazole resistant, with 
20 of these confirmed to have the TR34/L98H mutation [63].

Limited data on the prevalence of azole-resistant Asper-
gillus from Canada and Mexico are also available. One 
study conducted between March 2018 and December 2018 
that evaluated the susceptibility profiles of 113 Aspergillus 
isolates collected from 5 hospitals across the province of 
Quebec, Canada, of which 86 were A. fumigatus, found no 
azole resistance [64]. Another study screened 999 Aspergil-
lus isolates for azole resistance that had been collected over 
a 14-year period (2000 to 2013) at a hospital in Montreal 
[65]. Of these, 985 were A. fumigatus sensu stricto and 14 
cryptic species within Aspergillus section Fumigati. Ten iso-
lates were identified as azole-resistant, but this was driven by 
isolates of cryptic species, 7 of which were azole-resistant. 
Only a single A. fumigatus isolate was considered to be non-
susceptible to the azoles but with only mildly elevated azole 

MICs and no CYP51A mutations. The very low prevalence 
of azole resistance described in these two studies from the 
province of Quebec are in agreement with a study conducted 
in the neighboring province of Ontario, which included 194 
A. fumigatus isolates, including 124 environmental isolates 
collected from agricultural and urban settings around the 
city of Hamilton and 71 clinical isolates, none of which 
were resistant to itraconazole or voriconazole [66]. Although 
these results suggest that the prevalence of azole resistance 
in Canada is rare, the data are limited.

Unfortunately, data available from Mexico are also lim-
ited. One study conducted at a tertiary care center in Mexico 
City included 43 isolates collected from 39 patients between 
2014 and 2017, of which 24 were identified as A. fumigatus 
[67]. Only two A. fumigatus isolates were found to be azole 
resistant, with both containing the TR34/L98H mutation that 
had been cultured from azole-naive patients who had pre-
sented with invasive aspergillosis. A recent environmental 
study included 198 soil samples collected from agricultural 
and urban areas in Mexico City and Guanajuato [55]. Azole 
resistance was found in 7 of 102 A. fumigatus isolates, all 
of which were collected from urban settings. Five of these 
contained TR34/L98H mutations and one the TR46/Y121F/
T289A mutation.

South America

Data on azole resistance in South America is limited but 
is beginning to emerge. In a single-center study in Buenos 
Aires, Argentina, conducted between 2012 and 2016, of 
the 142 Aspergillus section Fumigati isolates, of which the 
majority were A. fumigatus, 13 isolates were found to be 
non-wildtype to itraconazole and 4 were non-wildtype to 
voriconazole [68]. In Peru, a prospective study performed in 
2019 that included 143 A. fumigatus isolates from two ter-
tiary care centers reported an azole resistance prevalence of 
2.09% [69]. In both Argentina and Peru, the TR34/L98H and 
TR46/Y121F/T289A mutations have been identified in clini-
cal isolates, including those from patients with prior azole 
exposure and those that were azole-naïve [33••]. Similarly, 
in a retrospective study that included 221 A. fumigatus iso-
lates from patients with aspergillosis from six medical cent-
ers in Brazil between 1998 and 2017, only 4 isolates (1.8%) 
were identified as having elevated voriconazole MICs, none 
of which contained a CYP51A mutation [70]. Azole-resistant 
isolates have also been found within environmental samples 
from South America. In Colombia, numerous A. fumigatus 
isolates harboring alterations in the promoter regions of the 
CYP51A gene, most of which were TR46/Y121F/T289A, 
have been found in the soil of flower and vegetable fields 
in and around Bogota [71, 72]. Similarly, azole-resistant A. 
fumigatus isolates have now been reported in environmental 
samples collected from both urban and rural areas within 
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Peru, all of which had the TR34/L98H mutation, as well as 
in Paraguay [55].

Asia–Pacific

Reports have also begun to emerge of azole resistance in 
clinical isolates cultured from patients in the Asia–Pacific 
region. As previously noted, the ARTEMIS study docu-
mented the presence of azole-resistant isolates, including 
those with the TR34/L98H mutation, in different medical 
centers in Hangzhou, China, as early as 2009 [37]. Similarly, 
azole resistance, including that caused by this same muta-
tion, was found in 3.17% of clinical isolates of A. fumigatus 
from a single center in Nanjing, China, between 2012 and 
2015 [73]. Similar rates of azole resistance in clinical iso-
lates have now been reported in Japan and Taiwan, includ-
ing isolates harboring TR34/L98H and TR46/Y121F/T289A 
mutations [74–80]. In Australia, the prevalence of azole-
resistant A. fumigatus in clinical isolates collected at two 
hospitals from 2015 to 2017 was low (2%) [81].

What is more concerning, however, is that parts of Asia 
may become hotspots for azole resistance in the environment 
[82], as high rates have been reported in recent studies con-
ducted in Vietnam and China. In an environmental sampling 
study that collected 450 samples from 150 locations across 
the Ca Mau province in the Mekong delta region of Viet-
nam, 324 Aspergillus species within section Fumigati were 
recovered, 62 of which were confirmed to be A. fumigatus 
sensu strico [56••]. Resistance to at least one azole was 
found in 95.2% of the A. fumigatus isolates. Fifty-six under-
went CYP51A sequencing, the majority of which contained 
a TR34/L98H mutation (60.7%). Interestingly, 18 of the 
azole-resistant A. fumigatus isolates (32.1%) were wildtype 
for CYP51A. The odds of itraconazole resistant A. fumiga-
tus were highest in isolates collected from urban residential 
areas (odds ratio 9.31; 95% CI 2.52–41.71), followed by fruit 
farms (7.16; 1.53–43.36), rice farms (5.70; 1.80–19.71), and 
shrimp farms (3.15; 1.01–10.40). Previously, this same group 
reported that over 85% of A. flavus isolates tested from this 
same environmental sampling study were resistant to at least 
one azole [83]. High rates of azole-resistant A. fumigatus 
have also been reported in environmental isolates collected in 
China. Within 900 soil samples collected from greenhouses 
in Kunming in the Yunnan province of southwest China, itra-
conazole resistance was observed in 78.54% and voricona-
zole resistance in 33.91% of the 233 A. fumigatus isolates that 
were cultured [84••]. TR34/L98H mutations were found in 28 
isolates compared to three with TR46/Y121F/T289A muta-
tions and two that solely had a 53-base pair repeat in the pro-
moter region (TR53). Interestingly, in a cross-sectional study 
of 63 soil cores collected from agricultural fields in China, 
azole resistance was detected in 21 of 206 A. fumigatus iso-
lates (10.2%) [85]. However, 18 of these were in samples 

collected from strawberry fields. Azole resistance has also 
been documented in environmental isolates collected in Tai-
wan and in agricultural products imported into Japan from 
the Netherlands [78, 86–88].

India and the Middle East

Initial reports from India suggested a low rate of azole-
resistant A. fumigatus in clinical isolates. The first study to 
identify a TR34/L98H mutation in this country reported it 
in only 2 of 103 isolates cultured from patients at a center 
in Delhi that caters to patients with chronic respiratory 
disease [89]. A subsequent surveillance study conducted at 
this same referral center, also in Delhi, between 2011 and 
2014, reported a prevalence of 1.73% (12 of 695 isolates), 
of which the majority also contained the TR34/L98H muta-
tion [90]. These results were supported by another study 
in which 0.8% of immunocompromised patients with inva-
sive aspergillosis were found to have infections caused by 
azole-resistant A. fumigatus, although the rate of resistance 
in cultured isolates was higher (4.9%) [91]. However, a 
more recent study from the referral center in Delhi, which 
used the commercially available AsperGenius TR34/L98H, 
TR46/Y121F/T289A assay, and a research that used only 
assay from this same company that detects G54 and M220 
mutations, to detect azole resistance mechanisms in bron-
choalveolar lavage samples from 160 patients with chronic 
respiratory disease, reported an azole resistance rate in 
34% of culture negative samples and in 25% of all sam-
ples, of which only 23% were culture-positive [34••]. This 
finding highlights the potential for underestimating azole 
resistance due to the poor sensitivity of cultures for Asper-
gillus species. The majority of patients in which resistance 
mutations were found were those with chronic pulmonary 
aspergillosis or allergic bronchopulmonary aspergillosis. 
Resistance has also been documented in clinical isolates 
collected in Iran (4 of 124 isolates collected over a 6-year 
period from Tehran, 3 of which harbored TR34/L98H) and 
in Turkey (3.3% of 392 A. fumigatus isolates collected from 
12 centers) [92, 93].

Environmental samples from these countries have 
also noted the detection of azole-resistant strains. In an 
early environmental sampling study conducted in several 
regions of India between 2011 and 2012, 9% of all soil 
samples contained azole-resistant A. fumigatus strains 
[57]. The highest rate was found in urban samples, includ-
ing those from tea gardens (33%) and from flower pots in 
hospital gardens (20%), all of which contained the TR34/
L98H mutation. A subsequent study from two regions of 
India reported that 7.6% of environmental A. fumigatus 
isolates were azole-resistant, including those with the 
TR46/Y121F/T289A mutation. Environmental samples 
from Iran, Turkey, and Kuwait have also been found to 
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harbor the azole-resistant isolates, including those with 
TR34/L98H and TR46/Y121F/T289A mutations [93–96].

Africa

Recent data has also emerged regarding the prevalence 
of azole-resistant A. fumigatus on the African continent 
[27••]. Between 2000 and 2021, 11 studies from 7 Afri-
can countries reported azole resistance in A. fumigatus. 
The majority of these were in environmental isolates (380) 
where the resistance rate ranged from 0 to 52% varying 
widely by country [27••, 55, 97–102]. The highest resist-
ance prevalence was noted in the eastern countries of Tan-
zania and Kenya (27% to 52%), while the western coun-
tries of Nigeria and Burkina Faso had much lower rates (0 
to 2.2%) [55, 97–99, 101, 102]. This difference has been 
postulated to be due to the higher use of azole fungicides 
in flower farming in Kenya and Tanzania [27••]. Many 
of these environmental isolates harbored the TR46/L98H 
mutation, although several that contained a G54E muta-
tion. Unfortunately, the clinical prevalence of azole resist-
ance on this continent is poorly understood, as these studies 
included only 7 clinical A. fumigatus isolates, 5 of which 
were azole-resistant [99, 103].

Conclusion

Although much has been learned regarding the extent of 
azole-resistant A. fumigatus in both clinical and environ-
mental specimens, our true knowledge of this emerging 
issue is fragmented. Most evaluations have been small point 
prevalence studies of limited duration that have included a 
limited number of institutions or sampling locations. Thus, 
they have not been able to adequately address trends in azole 
resistance over an adequate length of time. However, based 
on studies from the Netherlands, it is known that rates of 
azole-resistant A. fumigatus can fluctuate between differ-
ent periods even though the overall has been an increase. In 
addition, the relationship between azole resistance and clini-
cal outcomes must be better understood in different patient 
populations. Our understanding of the extent of this issue is 
also hampered by the fact that in most institutions and coun-
tries, susceptibility testing of molds, including A. fumigatus, 
is not routinely performed. Even if this were to improve, the 
rates of azole resistance may still be underestimated given the 
poor sensitivity of cultures for filamentous fungi, which are 
needed to perform phenotypic susceptibility testing. Thus, 
more emphasis is needed on the use of molecular assays, 
including the development of methods to detect CYP51A-
independent mechanisms of resistance. Thus, more work is 
most definitely needed in order to grasp the extent and rel-
evance of this emerging issue.
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