

Whole genome sequencing (WGS) analysis

The genes *msh6*, *msh2*, *pms1* and *mlh1* were analyzed in a collection of 161 A. fumigatus strains that were whole genome sequenced.

Table 1. Mutations detected in the WGS analysis of the genes msh6, msh2, pms1, *mlh1* and the percentage of strains harboring them.

Gene (Gene code)	Mutations	% of strains
msh6 Afu4g08300	A55V	0,62
	V118A	0,62
	D121E	0,62
	G178A	1,86
	I183R	10,56
	G240A	42,86
	N289S	2,48
msh2 Afu3g09850	A45T	3,73
	P329T	3,73
	E467D	0,62
	E812G	1,24
	A889E	0,62
pms1 Afu2g13410	G286C	0,62
	P401A, V438A, K464R, Q611E, E687K, E760K	4,35
	E444G	2,48
	S758Y	1,24
	D1013Y	0,62
mlh1 Afu5g11700	K310R	4,35
	S368N	4,35
	I510T	1,86
	A641S	4,35

The mutation G240A in Msh6 was the most prevalent, only harbored by strains from Cluster II. All the strains with the TR34/L98H azole resistance mechanism had the G240A msh6 mutation.

wild-type strain. Both strains were growth in liquid MM media, with shaking and heat conditions, under stepwise concentrations of benomyl, prochloraz and azoxystrobin drugs alone and in combination.

*Mutagenesis using other antifungal drugs including boscalid or imazalil and the Δ msh6 strain are currently in progress.

CONCLUSIONS

- Modifications in genes involved in the MMR system could be related to a higher A. fumigatus mutation rate and contribute to resistance acquisition.
- 2. This study suggests a possible link between alterations in Msh6 and azole resistance in *A. fumigatus*.

Poster N° 53

González-Jiménez I¹, Lucio J¹, Roldan A¹, Alcazar-Fuoli L^{1,2} and Mellado E^{1.2*}

¹ Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain. ² Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), ISCIII, Majadahonda, Madrid, Spain.

We were unable to recover antifungal resistant mutants from the *msh6* wild-type strain.

We were unable to recover any mutant strain grown under the pressure of the drugs benomyl or prochloraz.

CONTACT INFORMATION IRENE GONZÁLEZ JIMÉNEZ irene.gonzalez@isciii.es Phone: +34 91 8223661 *Corresponding author: **EMILIA MELLADO TERRADO** emellado@isciii.es

FUNDING: This work was supported by Fondo de Investigación Sanitaria (FISPI18CIII/00045) and Plan Nacional de I+D+I 2013-2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad (MPY 117/18) and Spanish Network for Research in Infectious Diseases (REIPIRD16/CIII/0004/0003).