Gemelli

Fondazione Policlinico Universitario A. Gemelli Università Cattolica del Sacro Cuore

Managing breakthrough Invasive Aspergillosis

Livio Pagano

Istituto di Ematologia-Polo di Onco-Ematologia Fondazione Policlinico Agostino Gemelli Università Cattolica S. Cuore

Roma

Questions

- Who are the patients at greatest risk for invasive aspergillosis?
- Which are the most incriminated drugs for a breakthrough fungal infections?
- or, better, which is the most incriminated procedure for a breakthrough fungal infections?
- What does breakthrough fungal infections mean?
- How can we reduce the risk of breakthrough aspergillosis?

The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study

Pagano et al, Haematologica 2006

Epidemiology of IFI in AML

Reference	Study Type	Phase of leukemia	Patient's characteristics	Type of Infection	IFI -Incidence
Bohm 2005	retrospective monocentric	induction and consolidation	82 AML (induction)	proven/probable	19,5% (13,4% IA; 6,1% candidiasis)

Proven/probable/possible = median 25% (4-48) Proven/probable only = median 8% (2-17) Why these wide ranges? It was due to:

- Kind of prophylaxis
- Phase of underlying AML

• Number of cases

Comes 2014	retrospective	in du ati an	125 484	anovon (anoboblo	10.00/
Gomes 2014	monocentric	induction		proven/probable	10,8%
Kung 2014	retrospective monocentric	reinduction and	130 AML	possible/proven/probable	10,8%
Girmenia 2014	retrospective	induction	198 AML	proven/probable	17,2%

IFI risk statification in HM

SEIFEM

HIGH Risk	INTERMEDIATE Risk	LOW Risk
<u>AML</u> undergoing Induction CHT with any of the following Risk Factors: Neutropenia a baseline, Iow CR probability (Adverse K, secondary AML), age > 65 yrs, Significant pulmonary disfunction, high e-TRM score <u>AML</u> with Prior IA <u>AML</u> undergoing <u>salvage regimens</u> for Relapsed/Refractory disease.	<u>AML</u> not meeting criteria for High or Low Risk groups.	<u>AML</u> <45 yrs; Undergoing first remission-induction or consolidation CHT and without <u>ANY</u> Risk Factors for IFI <u>APL</u> treated with ATRA/ATO
Auogeneic Stem Cell transplantation (from donors other than a matched si donor, patients active HM, GVHD requining high-dose steroids and history of previ	Allogeneic Stem Cell transplantation (from matched sibling donors, patients in complete remission with ring no evidence of GVHD and no previous IFI)	
MDS/AML receiving azacitidine as sal	ML undergoing Induction CH1	Γ with any of
therapy after intensive regimens	ne following Risk Factors: Neu	utropenia at
Acute Lymphoblastic Leukemia: patients (≥55y); Intensive pediatric r	aseline, low CR probability (A	dverse inance
(induction); High Doses dexame Previously treated (relapsed/refractor	ariotype, <u>secondary AM</u> L), <u>ag</u>	e > 65 yrs,
S	ignificant pulmonary disfunct	ion, high e-
T	RM score	
A	ML with Prior IA	
Bagano et al Blood Bouieurs	ML undergoing salvage regim	ens for
Fagano et al, bioda keviews F	elapsed/Refractory disease	

Current therapeutic approaches to fungal infections in immunocompromised hematological patients L. Pagano et al./Blood Reviews 24 (2010) 51–61

PROPHYLAXIS

Applicable to uninfected patients who are at risk for IFI

EMPIRICAL APPROACH

Early treatment of occult fungal infection, when patients have clinical signs and symptoms of infection but no clearly identifiable pathogen or radiological signs

Invasive Fungal Infections in Hematolgical Malignancies

Administered in neutropenic patient with persistent fever who show image-documented pneumonia, acute sinusitis, or a positive galactomannan test

Administered in patients with a clear evidence of fungal infection

TARGET THERAPY

PRE-EMPIVE APPROACH

High Incidences of Invasive Fungal Infections in Acute Myeloid Leukemia Patients Receiving Induction Chemotherapy without Systemic Antifungal Prophylaxis: A Prospective Observational Study in Taiwan

Jih-Luh Tang et al PLOS ONE June 10, 2015

- From Jan 2004 to Dec 2009
- 298 non-M3 adult AMLs in induction chemotherapy
- No systemic anti-fungal prophylaxis
- The median age 51 years
- The incidence of all-category IFIs was 34.6% (5.7% proven IFIs, 5.0% probable IFIs and 23.8% possible IFIs)
- 29 (9.7%) patients died. 20 deaths due to IFIs (68.9%)
- The overall IFI-attributed mortality during induction chemotherapy was 6.7% (20/298)

Impact of invasive fungal disease on the chemotherapy schedule and event-free survival in acute leukemia patients who survived fungal disease: a case-control study

Caroline Even,¹ Sylvie Bastuji-Garin,²³ Yosr Hicheri,^{1,4} Cécile Pautas,¹ Francoise Botterel,^{4,5,6} Sébastien Maury,^{1,4} Ludovic Cabanne,¹ Stéphane Bretagne,^{4,5,6} and Catherine Cordonnier^{1,4,5}

haematologica | 2011; 96(2)

	Cases	Controls	P value
Delay in chemotherapy	57%	20,5%	0,001
Median (range) delay in days	11 (1-38)	4,5 (1-45)	0,0058
Changes in chemotherapy	28,6%	7,7%	0,009
Changes in schedule	68%	24,4%	<0,001

Influence of pre-existing invasive aspergillosis on allo-HSCT outcome: a retrospective EBMT analysis by the Infectious Diseases and Acute Leukemia Working Parties

Penack et al BMT 2016

1995 86: 2063-2072

Antifungal prophylaxis in patients with hematologic malignancies: a reappraisal [see comments]

O Uzun and EJ Anaissie

* Inexpensive

- * Available in both oral and intravenous *formulation*
- Associated with a low incidence of *resistance*

Antifungal Activity of Azoles > 75% sensible ≤ 50% < 5% not effective

	Fluco	ltra	Vori	Posa	Isa
C. albicans					
C. parapsilosis					
C. tropicalis					
C. glabrata					
C. krusei					
A. fumigatus					
A. flavus					
A. terreus					
Zygomycetes					
Fusarium spp.					

Voriconazole Prophylaxis in allo-HSCTs

			N PATIENT	IFDs	P-VAL	UE
		Voriconazole	305	16 aspergillosis 3 candidemia		
Wingard et al, Blood 2010 (allo-HSCTs)		ONLY F	OR /	ALLO-HSC1	۲ <mark>s</mark>	
Marks et al,		voriconazoie	254	u candidemia O zygomycosis	IFD incide	nces in ence
<i>Br J Haemat 2011</i> (allo-HSCTs)	1	Itraconazole	255	1 aspergillosis 2 candidemia 0 zygomicosis	Increased use o AF in Itra arm p<0.01	

Posaconazole Prophylaxis

		N° PATIENT	IFIs	P-VALUE
Cornely et al,	Posaconazole	304	2 aspergillosis 7 IFIs	
NEJM 2007 (AML/MDS in Induction)	Fluconazole Itraconazole	240 58	20 aspergillosis 25 IFIs	<0.001
	Posaconazole	301	7 aspergillosis 16 IFIs	
<i>Ullman et al, NEJM 2007</i> (allo-HSCTs with GVHD)	Itraconazole	299	21 aspergillosis 27 IFIs	0.07 for IFIs 0.006 for IA

Mould-active compared with fluconazole prophylaxis to prevent invasive fungal diseases in cancer patients receiving chemotherapy or haematopoietic stem-cell transplantation: a systematic review and meta-analysis of randomised controlled trials

Outcome (pro mould active)	Trials (patients)	RR	(95% CI)	p-value
Proven/Probable IFI	18 (4802)	0.71	(0.52-0.98)	0.03
Invasive Aspergillosis	15 (4503)	0.53	(0.37-0.75)	0.0004
Adverse events requiring antifungal discontinuation	16 <mark>(4493)</mark>	1.95	(1.24-3.07)	0.004
IFI- related mortality	15 (4272)	0.67	0.47-0.96)	0.03
IA-related mortality	9 (2614)	0.62	0.23-1.71)	0.36
Overall Mortality	16 (4870)	1.00	(0.88-1.13)	0.96

Eithier et al BJC 2012

ECIL 5 update/ IDSA 2017/ECCMID 2017 Antifungal drugs for Prophylaxis in AML

Antifungal	ECIL	IDSA 2017	ECCMID 2017
Posaconazole	AT	Strong recommendation; high-quality evidence	AI
Itraconazole	BI	Strong recommendation; moderate-quality evidence	DII
Fluconazole	BI	Not recommended	/
Voriconazole	BII	Strong recommendation; moderate-quality evidence	CII
L-AmB	CII	Not recommended	C II (all doses)
ABCD	CII	Not recommended	C III
Echinocandins	CII	Weak recommendation; low-quality evidence	C II (only Micafungin)
Aerosol L-AmB	BI	Not recommended	/
Aerosol AmB	A I against	Not recommended	B I (associated to Fluconazole)
AmB deoxycholate	A II against	Not recommended	/

Maertens et al, ECIL 5; Patterson et al, CID 2016; Cornely et al, CMI 2017

Evaluation of the Practice of Antifungal Prophylaxis Use in Patients With Newly Diagnosed Acute Myeloid Leukemia: Results From the SEIFEM 2010-B Registry

Pagano et al, Clin Infect Dis 2012

	ITRACONAZOLE 93 patients		POSACONAZOLE 260 patients
Probable/ Proven IFIs	13 (14%)	p <0.001	10 (3.8%)
Probable/ Proven IA	10 (10.7%)	p 0.02	7 (2.7%)

	ITRA N°93	POSA N°260	p-value
Frontline antifungal approach	41 (45.1%)	69 (26.6%)	0.001
* Empirical	21 (22.6%)	53 (20.3%)	0.49
Pre-emptive	13 (14%)	12 (4.6%)	0.003
Target	7 (7%)	4 (1.5%)	0.004

Are these cases all Breakthrough Infections?

	Prophylax is	Cases	Proven/ Probable IFD	IA	Systemic Antifungal Therapy	Overall Mortality
Cornely et al	Posa	240	2%	1%	27%	16%
NEJIVI 2017	Itra/Fluco	58	8%	7%	38%	22%
Ullman et al, NEJM 2017	Posa	301	5%	1%	nr	13%
	ltra	299	9%	6%	nr	12%
Wingards et al, Blood 2010	Vori	305	7%	5%	24%	19%
	Fluco	295	4%	2%	30%	20%
Marks et al,	Vori	234	2%	2%	30%	27%
ы у паеті	Itra	255	1%	0.4%	42%	33%

What does breakthrough fungal infections mean?

There are no standardized definitions !

An IFD could be considered to be a breakthrough IFD if the causative organism was different from that originally detected before the commencement of an antifungal therapy (including prophylaxis), occurrence was detected ≥3 days after the initiation of antifungal therapy, or subsequent infection occurred within 14 days after the discontinuation of any antifungal therapy

Mould active prophylaxis may decrease sensitivity of serum galactomannan assay?

Posaconazole oral suspension primary prophylaxis in acute leukemia and allogeneic stem cell transplant patients: can it be used without measurement of plasma concentration?

> Distribution of plasma concentrations at steady state in 168 samples (115 prophylaxis courses) in AL pts

Girmenia et Al. Med Mycol. 2016

Posaconazole TDM (83 courses)

Reasons for discontinuation in AL patients with two or more measurements

Reason for PCZ-OS discontinuation	Inadequate PPC pattern, 18 courses	Sufficient PPC pattern, 12 courses	Adequate PPC pattern, 53 courses	
Shift to another antifunfgal drug (11)*	6 (33.3%)	2 (16.7%)	3 (5.7%)	
Proven-probable or possible IFD (6)	3 (16.7%)	1 (8.3%)	2 (3.8%)	
Empiric antifungal therapy (5)	3 (11.1%)	1 (8.3%)	1 (1.9%)	

() n. of cases

*The rate of shift to another antifungal drug was significantly higher in courses with an inadequate PPC pattern as compared to courses with sufficient or adequate PPC pattern, P=0.007

Not always failure in prophylaxis means inadequate dosage, but more frequently yes..

Girmenia et Al. Med Mycol. 2016

Posaconazole TDM

(83 courses)

in AL patients with two or more measurements

Variable	Inadequate PPC pattern, (18)	Sufficient PPC pattern, (12)	Adequate PPC pattern, (53)	P*
Oral mucositis, n. (%)				
No	11 (61.1)	7 (58.3)	36 (67.9)	0.78
Yes	7 (38.9)	5 (41.7)	17 (32.1)	
Diarrhea, n. (%)				
No	8 (44.5)	10 (83.3)	49 (92.4)	0.0001
Yes	10 (55.5)	2 (16.7)	4 (7.6)	J
Use of PPI, n. (%)				
No	13 (72.2)	10 (83.3)	46 (86.8)	0.17
Yes	5 (27.8)	2 (16.7)	7 (13.2)	
Feeding, n. (%)				
Adequate	15 (83.3)	10 (83.3)	48 (90.6)	0.45
Poor	3 (16.7)	2 (16.7)	5 (9.4)	
Compliance, n. (%)				
Good	16 (88.9)	12 (100)	51 (92.2)	0.20
Poor	2 (11.1)	0 (0)	2 (7.8)	

PPC = plasma posaconazole concentration; **PPI =** proton pump inhibitor

* Courses with inadequate PPC pattern were compared to courses with sufficient/adequate PPC pattern

Girmenia et Al. Med Mycol. 2016

Interactions of mold-active azoles (voriconazole and posaconazole) with coadministered chemotherapic agents and target therapies

COADMINISTERED AGENT	INTERACTION MECHANISM	EFFECT	RECOMMENDATIONS AND ACTIONS
<i>Vinca Alkaloids</i> Vincristine	Inhibition CYP3A4	Increased neurotoxicity	Avoid coadministration
Alkylating agents Cyclophosphamide (CTX)	Inhibition CYP3A4/2C9	↑ hepatotoxicity ↓ activation to hydroxy-CTX	Monitor Avoid coadministration
Bruton's tyrosine kinase inhibitors Ibrutinib	Inhibition CYP3A4/2C9	↑ Ibrutinib exposure	420 mg standard dose 280 mg if Fluco; 140 mg if Posa/vori
PI3K inhibitors Idelalisib	Inhibition CYP3A4/Pgp	↑ AUC	Monitor for side effect
JAK2 inhibitors Ruxolitinib	Inhibition CYP3A4/2C9	↑ Ruxolitinib exposure	↓ dose 50%; monitor cytopenias
ТКІ			
Imatinib	Inhibition CYP3A4	↑ Imatinib exposure	Avoid coadministration
Dasatinib	Inhibition CYP3A4	↑ D. exposure,↑ QT interval	Avoid coadministration, monitor ECG
Nilotinib	Inhibition CYP3A4	↑ N. exposure, ↑ QT interval	Avoid coadministration, monitor ECG
ponatinib	Substrate CYP3A4	↓ TKI dosage	Avoid coadministration
sorafenib	Inhibition CYP3A4	No effect	Monitor QTc
Midostaurin	Inhibition CYP3A4	↑ adverse reaction	Avoid coadministration, monitor QTc
Quirzatinib	Inhibition CYP3A4	↑ Quirzatinib exposure	↓ dose (induc 40 mg ->20 mg)

Azole resistance in *Aspergillus fumigatus*: a side-effect of environmental fungicide use?

- The presence of a single resistance mechanism (denoted by TR/L98H) was found in over 90% of itraconazole-resistant Dutch *A. fumigatus* isolates, which also showed reduced susceptibility to voriconazole and posaconazole
- This is in contrast with a different pattern of resistance observed in British
 A. fumigatus isolates, where a wide variety of *cyp51A* mutations (substitutions at codons G54, G138, P216, F219, M220, and G448), have been found
- TR₃₄/L98H isolates were recovered primarily from azole-naïve patients and were also recovered from the environment. These observations suggest that azole-resistant *Aspergillus* is acquired by patients from an environmental source rather than arising through azole therapy

Azole Resistance in *Aspergillus fumigatus*: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles?

Table 3. Reported Mortality Rates in Patients With Invasive Aspergillosis in Different Time Periods

	Aspergillus Disease									
Era IA Comment			CNS IA	Comment						
c-AmB era	65% [<mark>2</mark>]	122 of 187 patients receiving c-AmB died.	95%–100% [<mark>3</mark>]	Literature review						
	71.6% [55]	187 of 261 patients with IA died.	99% [56]	Review of 141 cases of CNS IA in immunocompromised patients, of whom 140 died.						
Azole era	27.5% [57]	9-wk mortality: 39 of 142 patients receiving voriconazole monotherapy.	45.6% [7]	Retrospective analysis of 81 patients with CNS IA treated with voriconazole						
	28.5% [58]	Population-based study analyzing 8563 aspergillosis cases in France.	35.4% [59]	Literature review: 4 of 11 patients with CNS IA who received voriconazole monotherapy.						
Azole resistant	100% [44]	Culture-positive patients with proven and probable IPA treated with voriconazole (5/5)	86% [24, 44, 60]	7 cases of azole-resistant CNS IA have been reported, of which 6 were fatal.						
	88% [45]	8 HSCT patients with culture-positive, azole-resistant IA, of whom 7 died.								
	100% [54]	ICU patients with culture-positive azole-resistant IA died (10/10), compared with 21 of 28 (75%) with azole-susceptible IA.								

Abbreviations: c-AmB, conventional amphotericin B; CNS, central nervous system; HSCT, hematopoietic stem cell transplant; IA, invasive aspergillosis; ICU, intensive care unit; IPA, invasive pulmonary aspergillosis.

Verweij et al. Clin Infect Dis 2016

Changing Epidemiology of Invasive Mold Infections in Patients Receiving Azole Prophylaxis

Lamoth et al CID 2017

Both during posaconazole or voriconazole prophylaxis. Results:

- More non-Aspergillus infections
- Among Aspergillus higher percentuage of A. ustus

IDSA guidelines 2010

Freifeld et al, Clin Infect dis (2011); 52(4):e56–e93

Diagnosis and Management of Aspergillus Diseases: Executive Summary of the 2017 ESCMID-ECMM-ERS Guideline

Definition of patient populations: GM (and PCR) monitoring OR mould-active prophylaxis

Symptoms (e.g. persistent fever)

Positive GM or PCR

Minimum diagnostic procedures: CT and microbiological work-up (cytology, culture & biomarkers)

CT negative / biomarker negative: <u>If prophylaxis:</u> Continue prophylaxis, consider TDM, and actively exclude alternative foci (e.g. sinusitis) <u>If no prophylaxis</u> : No antifungals and actively exclude alternative foci (e.g. sinusitis)	CT positive / biomarker negative: <u>If prophylaxis</u> : Discontinue prophylaxis or consider TDM. Treat as recommended for targeted treatment, but change antifungal class <u>If no prophylaxis:</u> Start antifungal therapy for fever-driven strategy			
CT negative / biomarker positive: Actively exclude alternative foci (e.g. sinusitis). Treat as recommended for targeted treatment, but change antifungal class if prophylaxis was given	CT positive / biomarker positive: Treat as recommended for targeted treatment, but change antifungal class if prophylaxis was given			

Cornelly et al, CMI 2018 in press

Systemic antifungal treatment after posaconazole prophylaxis: results from the SEIFEM 2010-C survey

Pagano et al, JAC 2014

Data from the SEIFEM registry

Pagano et al, JAC 2014

Kind of Evidence	Cases	At 30 days		Duration Mean (range)	AMR	Overall mortality		
Empirical	102			14 d (6-90)	3 (3%)	26 (25%)		
✤ L-AmB	69	FUO Possible	26 37	13 (6-40)	3	15		
		Probable Proven	4 2	No statistical difference between				
 Caspofungin 	26	FUO Possible Probable	9 12 5	11 (14-58)	/	9		
 Others (4 ABLC, 3 voriconazole) 	7	FUO Possible	2 5	11 (7-19)	/	2		
Pre-Emptive	19			18 d (8-42)	0	4 (21%)		
✤ L-AmB	12	Possible Probable	5 7	15 (8-30)	/	2		
		Proven	1	No statistical o	difference between			
 Voriconazole 	6	Possible Probable Proven	4	L-AmB and Vori				
			1					
 Posaconazole 	1	Possible		22	/	1		

Systemic antifungal treatment after posaconazole prophylaxis: results from the SEIFEM 2010-C survey

Pagano et al, JAC 2014

High rate of breakthrough invasive aspergillosis among patients receiving caspofungin for persistent fever and neutropenia

Breakthrough invasive mould infections in patients treated with caspofungin Pang et al, J Infect 2014

N°	Age (year), sex	Underlying condition	Neutropenia at onset of breakthrough IMD	Reason for caspofungin therapy	Exposure to caspofungin (days)	Pathogen	Site of IMD (degree of certainty)	Mycological findings	Therapy of breakthrough IMD	Response	Survival (days)	l Death from IMD
1	68, M	NHL, diabetes	No	Candidemia	31	Aspergillus sp.	Lung (probable)	GM (serum)	Vori, ABLC + caspo	Failure	19	Yes
2	67, M	HCL, neutropenia, diabetes	No	Candidemia	7	Aspergillus sp.	Lung (probable)	GM (serum)	ABLC, L-AmB, Vori	Failure	30	Yes
3	56, M	ALL, neutropenia, diabetes, T-cell suppressor	No	Candidemia	21	Aspergillus sp.	Lung (proven)	Histopath (lung biopsy), GM (serum)	Vori	Failure	84+	NA
4	67, F	AML, neutropenia	No	Candidemia	15	Aspergillus sp.	Lung (probable)	GM (BAL)	Vori	CR	84 +	NA
5	62, M	AML, neutropenia	Yes	Candidemia	9	IMD	Lung (possible)	None	Vori	CR	55	No
6	74, M	AML, neutropenia	Yes	Aspergillosis	16	Fusarium moniliforme	Blood (proven)	Culture (blood)	Vori + terbinafine	Failure	23	Yes
7	70, M	CLL, neutropenia, T-cell suppressor	Yes	Aspergillosis	7	Mucor sp.	(probable)	Culture (tracheal aspiration)	None	Failure	1	Yes
8	38, M	HSCT, myeloma, GvHD, neutropenia, diabetes, steroids, T-cell suppressor	No	Prophylaxis	56	A. fumigatus	Lung (probable)	Culture (BAL)	Vori	Failure	69	Yes
9	52, M	HSCT, CLL, neutropenia, steroids, T-cell suppressor	No	Prophylaxis	55	A. fumigatus	Lung (probable)	Culture (sputum), GM (serum)	L-AmB + caspo, L-AmB + vori	Failure	33	Yes
10	40, M	HSCT, ALL, GvHD, neutropenia, T-cell suppressor	No	Prophylaxis	20	Aspergillus sp.	Lung (probable)	GM (serum)	None	Failure	11	Yes
11	40, M	NHL, HIV+, neutropenia	No	Empirical	28	A. fumigatus	Lung (proven)	Culture (lung biopsy)	Vori, L-AmB	CR	45	No
12	51, M	AML, neutropenia	Yes	Empirical	9	Aspergillus sp.	Lung (proven)	Histopath (lung biopsy), GM (serum)	L-AmB + caspo, Vori	CR	84+	NA
13	49, M	AML, neutropenia	Yes	Empirical	8	Mucor sp.	Lung (proven)	Culture (lung biopsy)	L-AmB, Posa	CR	84+	NA
14	67, M	AML, neutropenia	Yes	Empirical	11	Aspergillus sp.	Lung (probable)	GM (serum)	Vori	CR	84+	NA
15	65, M	AML, neutropenia	Yes	Empirical	9	IMD	Lung (possible)	None	L-AmB, Vori	CR	84+	NA
16	60, M	AML, neutropenia	Yes	Empirical	8	Aspergillus sp.	Lung (probable)	GM (serum)	Vori, Vori + L-AmB	CR	84+	NA
17	25, F	ALL, neutropenia	Yes	Empirical	21	Hormographiella	Lung (proven)	Culture (lung	Vori, L-AmB	CR	84+	NA

How can we reduce the risk of breakthrough aspergillosis?

