Research priorities in medical mycology

David W. Denning National Aspergillosis Centre University Hospital of South Manchester The University of Manchester

Agenda

How many patients are there with serious fungal infection? Acute versus recurrent versus chronic infection Diagnostics - progress and gaps Risk evaluation using genetics - how likely? Prophylaxis versus vaccines Antifungal resistance and new antifungals Funding issues Conclusions

Over 300 million people affected by serious Fungal Infection worldwide

www.fungalresearchtrust.org/HowCommonareFungalDiseases2.pdf

INTERNATIONAL FUNGAL EDUCATION

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Cryptococcal meningitis						
Pneumocystis pneumonia						
Invasive aspergillosis						
Chronic pulmonary aspergillosis						
Fungal eye infection	-					
Fungal hair infection	-		1			

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)						
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care		
Cryptococcal meningitis	1,000's	1,000,000		1,000's			
Pneumocystis pneumonia		>200,000		>100,000			
Invasive aspergillosis			>100,000	>50,000	>50,000		
Chronic pulmonary aspergillosis			3,000,000				
Fungal eye infection	1,000,000						
Fungal hair infection	200 million						

LEADING INTERNATIONAL FUNGAL EDUCATION

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)					
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care	
Candida infectio	ons					
Oral thrush			T	I	1 1	
Oesophageal candidasis						
Candida vaginitis 4x/yr	>75 million					
Candida bloodstream infection			1		1	

INTERNATIONAL FUNGAL EDUCATION

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)						
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care		
Candida infectio	ons						
Oral thrush		9,500,000	100,000's	millions			
Oesophageal candidasis		2,000,000					
Candida vaginitis 4x/yr	>75 million						
Candida bloodstream infection				100,000	200,000		
Allergic lung dis	sease						
ABPA			4,000,000		⊤ ₽ 8 6 ≮		
SAFS			>3,500,000				
	•				LEADING INTERNATIONAL FUNGAL EDUCATION		

The severity of the problem

Deaths per year

- Cryptococcal meningitis 10% death rate in the USA, >80% in Africa. 600,000 deaths.
- Invasive aspergillosis 50% mortality treated, 100% if not. >100,000 deaths
- Chronic pulmonary aspergillosis 15% annual mortality, 450,000 deaths.
- Pneumocystis pneumonia ~15% mortality in AIDS, ~50% non-AIDS, >80,000 deaths.
- Candida bloodstream infection ~40% mortality, 120,000 deaths
- SAFS increased risk of asthmatic death (estimated to be 100,000 annually worldwide)

Reality check with TB

	TB (2008)	Fungal Infection
Incident cases	9-10 million	>14 million
Prevalent cases	10-13 million	~285 million
HIV related deaths	~550,000	~650,000
Non-HIV related deaths	~1,500,000	>700,000

Chronic fungal infections

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)						
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care		
Cryptococcal meningitis	1,000's	1,000,000		1,000's			
Pneumocystis pneumonia		>200,000		>100,000			
Invasive aspergillosis			>100,000	>50,000	>50,000		
Chronic pulmonary aspergillosis			3,000,000				
Fungal eye infection	1,000,000						
Fungal hair infection	200 million						

Recurrent and chronic fungal infections

Fungal Infection	Global burden of serious fungal infection (estimates by underlying disease)						
	None	HIV/AIDS	Respiratory	Immune deficit / Cancer	Critical care		
Candida infectio	ons						
Oral thrush		9,500,000	100,000's	millions			
Oesophageal candidasis		2,000,000					
Candida vaginitis 4x/yr	>75 million						
Candida bloodstream infection				100,000	200,000		
Allergic lung dis	ease				·		
ABPA			4,000,000				
SAFS			>3,500,000				

FUNGAL EDUCATION

The severity of the problem

Ill health and morbidity

- Oral and oesophageal thrush unpleasant, reduced food intake and weight loss.
- Candida vaginitis anxiety and impaired sex life
- ABPA and SAFS breathlessness with severe asthma, reducing work capability
- Chronic pulmonary aspergillosis progressive breathlessness and weight loss
- Fungal eye infection unilateral blindness
- Fungal hair infection psychological problems and contagious

Fungal Infection Impact

No studies assessing:

Disability Adjusted Life Years (DALY) Quality Adjusted Life Years (QALY) Quality-adjusted life expectancy (QALE) Population health-related quality of life (HRQOL)

Diagnostic improvements in fungal diagnosis in last 20 years

- Aspergillus antigen testing
- Susceptibility testing of Candida and Aspergillus
- Chromagar
- CT scanning of the chest
- PCR for Pneumocystis, Aspergillus, Candida and Trichophyton
- Molecular identification of fungi and discovery of numerous cryptic species
- Direct identification from blood culture or agar plates
- Rapid dip-stick test for cryptococcal meningitis

Limitations of current diagnostics

a) insensitiveb) slow

Rapid diagnostic approaches

	Candida	Aspergillus	Mucorales	PCP
CRP	+/-	+/-	-	-
CT scan	+/-	++	+	-
Microscopy	+/-	+	++	++/+
GM antigen	-	++	-	-
Glucan	++	+	-	++
Antibody	+/-	+/-	-	-
PCR	+++	++	?+	+++

Candida blood cultures - performance of lysis centrifugation system

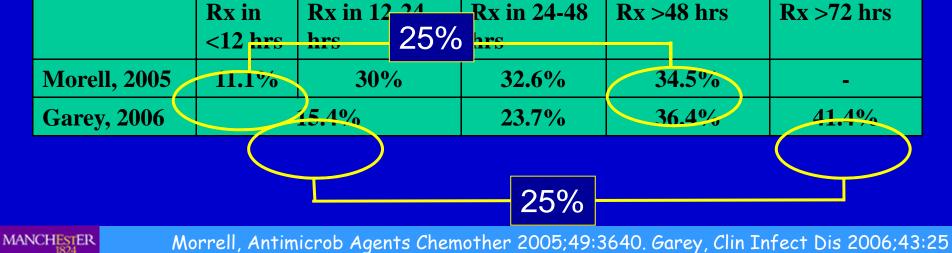
Autopsy diagnosis	Proportion B/C +ve (%)	Number of B/C drawn (median per pt)	Time to +ve (mean days)
Single organ	5/18 (28%)	11 (1-40)	3.2 (2-5)
Disseminated	11/19 (58%)	17 (6-55)	2.6 (1-4)
All	16/37 (43%)	-	_

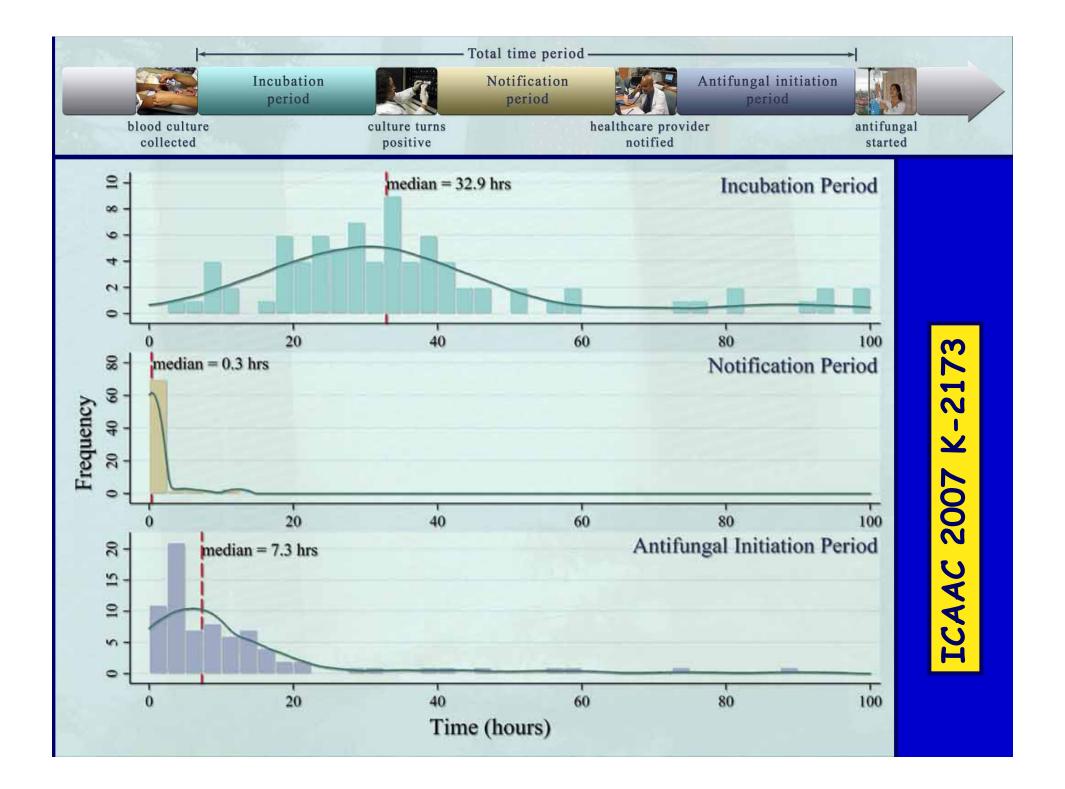
MANCHESTER

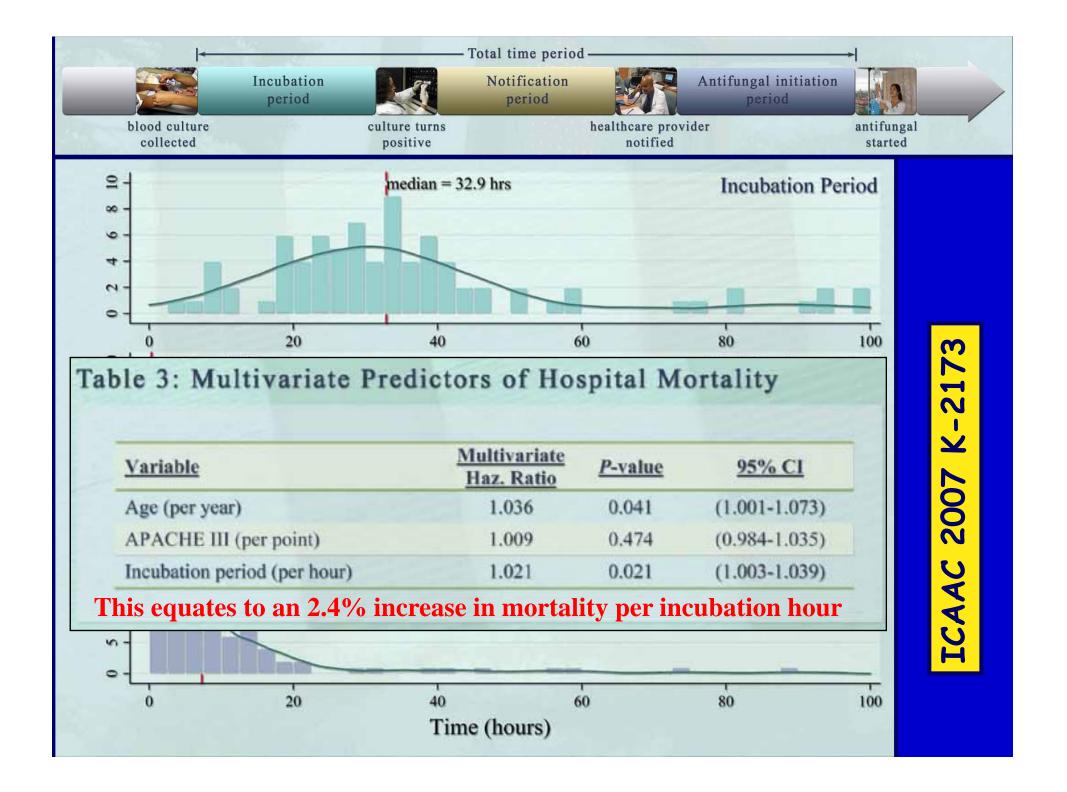
Berenguer, Diagn Microbiol Infect Dis 1993;17:103.

Impact of fluconazole on *Candida* blood cultures in leukaemia

Sensitivity of blood culture for diagnosis of Candida species.


Year	Number of cases	Candida albicans*	Other Candida spp.
1980-84	33	6/16	3/3
1985-89	32	1/13	3/7
1990-94	19	1/6	3/8
1995-99	10	0/2	2/6
Total	94	8/37**	11/24**


Autopsy proven cases of disseminated candidiasis – 20/94 (21%) with IC had a positive blood culture


Impact of fluconazole on negative cultures P = 0.018 for all *Candida* species and P = 0.0086 for *C. albicans*

Early treatment critical to good outcome

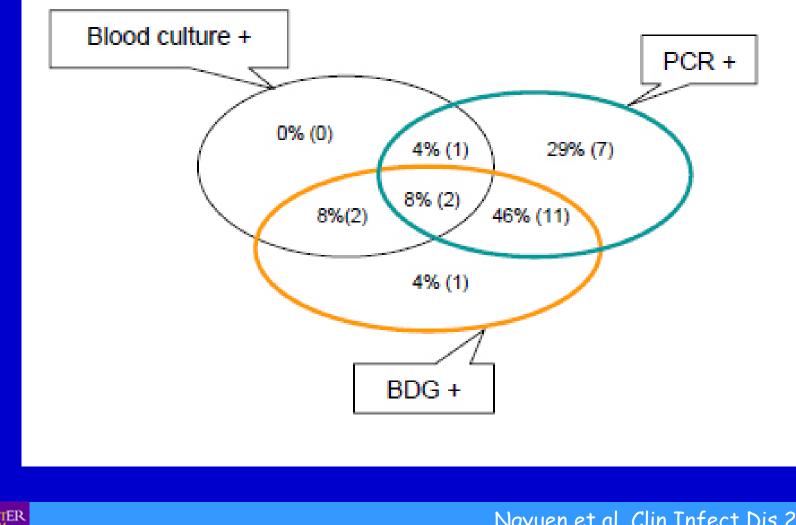
Candidaemia 45 40 35 Mortality (%) 12 02 52 05 12 05 10 5 Û $Day \ge 3$ Culture day Day 1 Day 2 Days to start of fluconazole Mortality rate from time of blood draw that later turns positive

Meta-analysis of PCR for candidaemia and invasive candidiasis

PCR Diagnosis of Invasive Candidiasis: Systematic Review and Meta-Analysis[⊽]†

Tomer Avni,1* Leonard Leibovici,1 and Mical Paul2

Medicine E¹ and Unit of Infectious Diseases,² Rabin Medical Center, Beilinson Hospital and Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel


or specificity values. We included 54 studies with 4,694 patients, 963 of whom had proven/probable or possible IC. Perfect (100%) sensitivity and specificity for PCR in whole-blood samples was observed when patients with cases had <u>candidemia</u> and controls were healthy people. When PCR was performed to evaluate patients with suspected invasive candidiasis, the pooled sensitivity for the diagnosis of candidemia was 0.95 (confidence interval, 0.88 to 0.98) and the pooled specificity was 0.92 (0.88 to 0.95). A specificity of >90% was maintained

targets and a PCR detection limit of ≤ 10 CFU/ml were associated with improved test performance. PCR positivity rates among patients with proven or probable IC were 85% (78 to 91%), while blood cultures were positive for 38% (29 to 46%). We conclude that direct PCR using blood samples had good sensitivity and

Avni et al, J Clin Microbiol 2011;49:665

Diagnosis of candidaemia and invasive candidiasis with glucan and serum PCR

MANCHESTER

Ngyuen et al, Clin Infect Dis 2012 Mar

Direct detection of resistance mutations in clinical specimens, without positive cultures

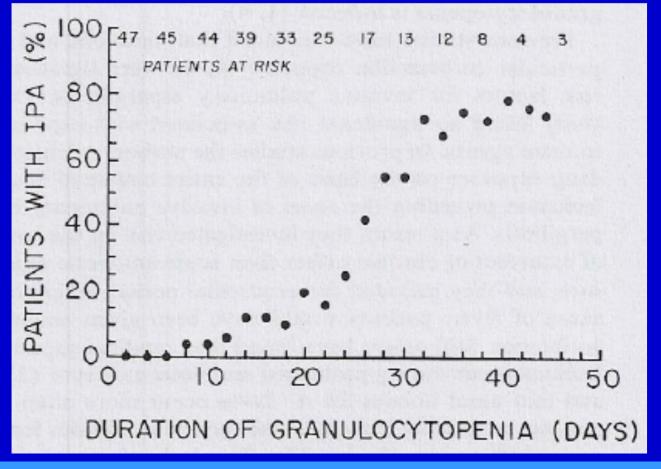
Laboratory result	ABPA	СРА	Normals
Culture positive for <i>A. fumigatus</i>	0/19	7/42 (16.7%)	0/11
qPCR positive for <i>Aspergillus</i> spp	15/19 (78.9%)	30/42 (71.4%)	4/11 (36.4%)
<i>A. fumigatus</i> CYP51A mutation detected directly from qPCR positive sample	6/8 (75%)	12/24 (50%)	NT

Evaluation of processing methods for Aspergillus - sputa and bronchoscopy samples

Literature review

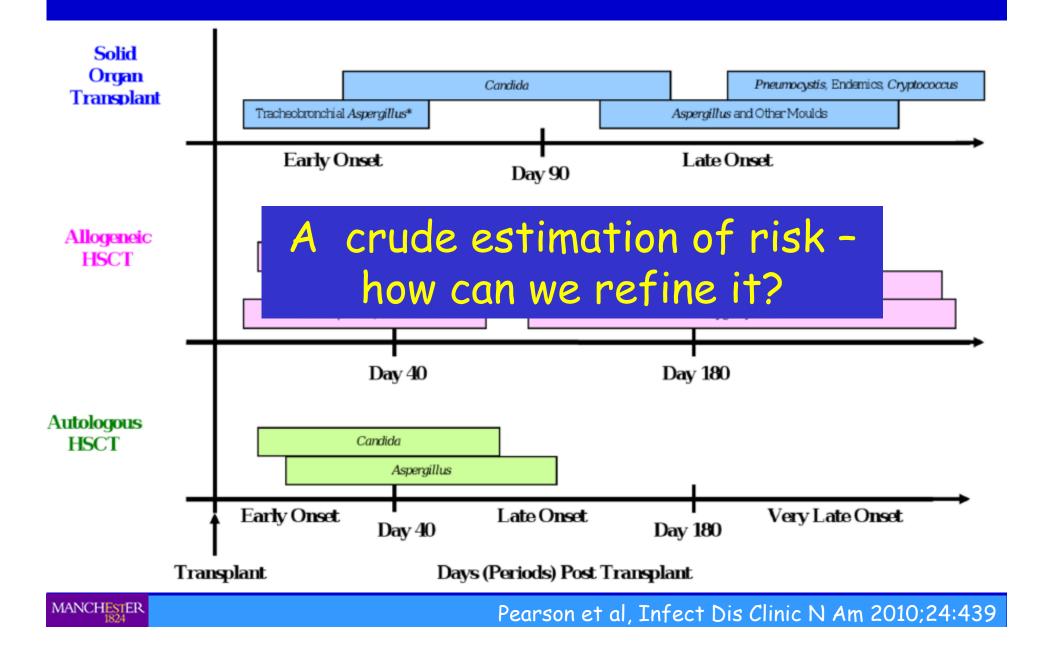
No papers

Invasive fungal disease risk assessment Can we do it with genetics?



Invasive aspergillosis: Time of diagnosis

A single centre case control study :


MANCHESTER

- IA based on radiology (CXR) and clinical features

Risk period of fungal disease

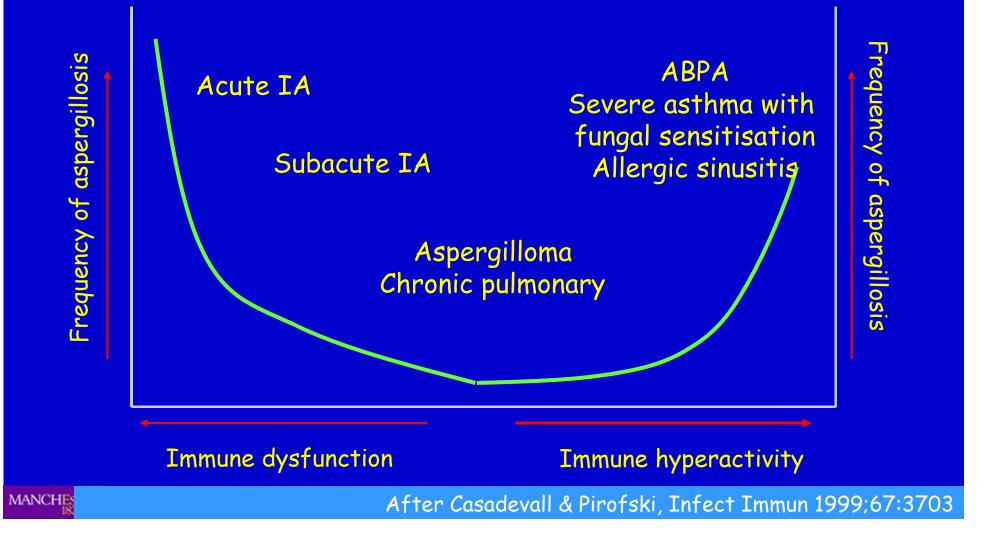
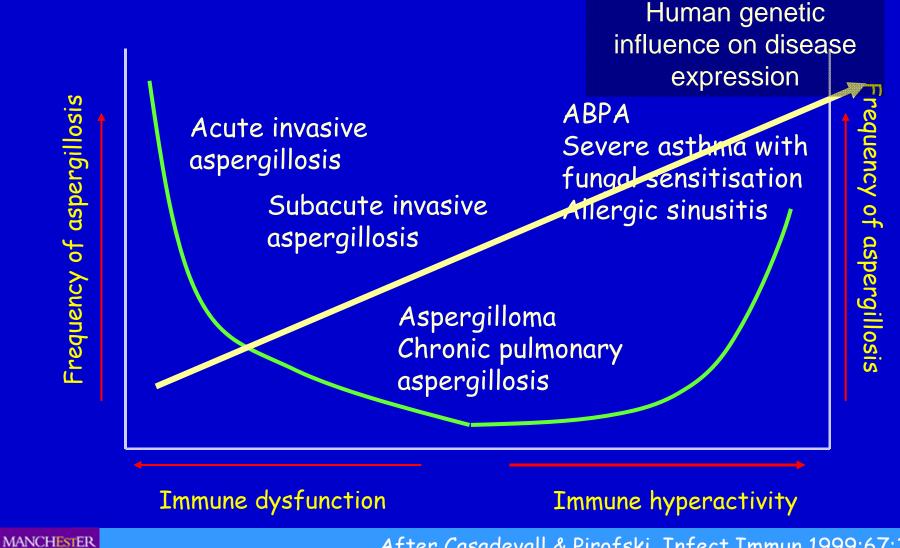

Genetic risks

Table 1


Association between defined genetic polymorphisms and an increased risk to suffer from diseases caused by A. fumigatus,

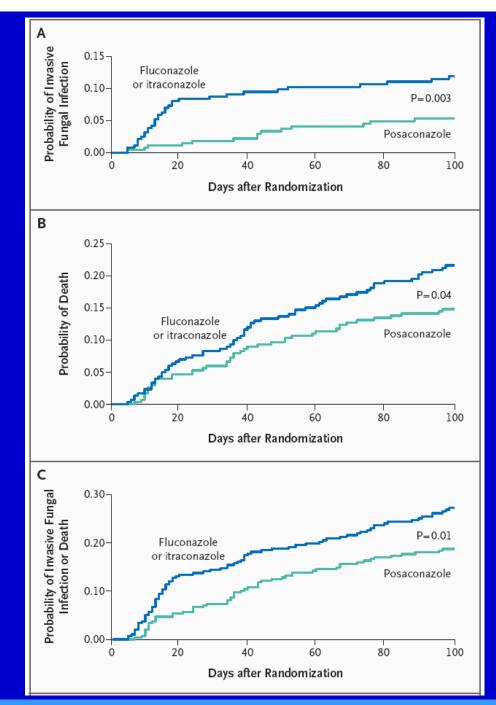
Gene	dbSNP number	SNP position	Asp pos,	Asp neg,	Statistics	Population	Disease	Reference
CXCL10 (4q21)	rs1554013	11101 C/T ^a [Downstream]	51	49	p = 0.007 O <u>R = 2.2</u> CI = 1.2-3.8	Caucasian	IA after HSCT	Mezger et al.
	rs3921	1642 C/G ^a [3' UTR]	39	46	p=0,003 O <u>R=2,6</u> CI=1,4=5,0	(retrospective)	[EORTC/IFICG]	(2008)
	rs4257674	–1101 A/Gª [Promotor]	52	44	p=0,001 OR=2,8 Cl=1,6=5,2			
IFN- γ (12q14)	rs2069705	–1616 C/T² [Promotor]	69	56	p=0,010 OR=2,0 Cl=1,2=3,4			
IL-10	rs 1800896	–1082 A/G [Promotor]	58	55	p=0,046 OR= 1.7 Cl= 1.0-2.9			
(1q31-q32)	rs 1878672	2068 C/Gª [Intron]	67	57	p=0.025 0R=1.8 Cl=1.1-2.9			
	rs 1800896	–1082 A/G [Promotor]	119 <i>Af</i> col, 27 ABPA	232	p = 0,020 <u>OR= 1,7</u> CI= 1,1-2,5	Caucasian (retrospective)	colonization with A, fumigatus or ABPA after CF	Brouard et al, (2005)
	rs 1800896 rs 1800871 rs 1800872 (haplotype)	–1082 A/G –819 C/T –592 A/C [Promotor]	9	96	p=0,012 0 <u>R=9,3</u> CI=1,6=52,8	Korean (retrospective)	IPA after HSCT [EORTC/MSG]	Seo et al, (2005)
	rs1800896	–1082 A/G [Promotor]	59	61	p = 0,052 OR= 1,7 CI= 1,0=2,9	Caucasian (prospective)	IPA in haematological patients	Sainz et al. (2007b)
IL-1 β (2q14)	rs1143627	–511 C/T [Promotor]	59	51	p = 0,095 OR= 1,7 CI= 0,9- 3,0	Caucasian (retrospective)	[EORTC/IFICG] IPA in haematological patients [EORTC/IFICG]	Sainz et al. (2008a)
<i>IL-4R</i> α (16p12,1-	rs 1805010	4679 A/C/G/T [75 I/L/F/V]	40	56	p - 0,008	Caucasian	ABPA	Knutsen et al, (2006)

Interaction of *Aspergillus* with the host A unique microbial-host interaction

Interaction of *Aspergillus* with the host A unique microbial-host interaction

After Casadevall & Pirofski, Infect Immun 1999;67:3703

Making genetics work for patient care


- 1. Larger studies, across ethnic boundaries
- 2. Complex statistics (opportunity for many false or nonsignificant associations)
- 3. Needs a strong reproducible phenotype
- 4. Could be used for risk prediction (ie pre-transplant) or prognostication or drug disposition/toxicity
- 5. Will require integration with other parameters (ie CMV status)
- 6. Will require expert AI systems to optimise clinical utility

Can we protect patients with immunisation?

Posaconazole prophylaxis in AML

Cornely OA, NEJM 2007; 356: 348.

Aspergillus vaccine approaches in the literature

- Conidia, inactivated and live attenuated
 - partially protective, if not killed
- Heat-killed Saccharomyces cerevisiae, parenteral and oral
 - partially protective, and broad spectrum
- Asp f3
 - protective, if administered with adjuvant
- Recombinant Asp f2 and derived peptides
 - Immunodominant T cell epitopes were partially protective
- Beta-glucan-CRM197 conjugates
 - protective in mice challenged with *Candida albicans*
- Dendritic cell vaccines, pulsed with Asp f9, IL12.
 - partially protective, requiring live cell infusion

MANCHESTER

An Aspergillus vaccine for what?

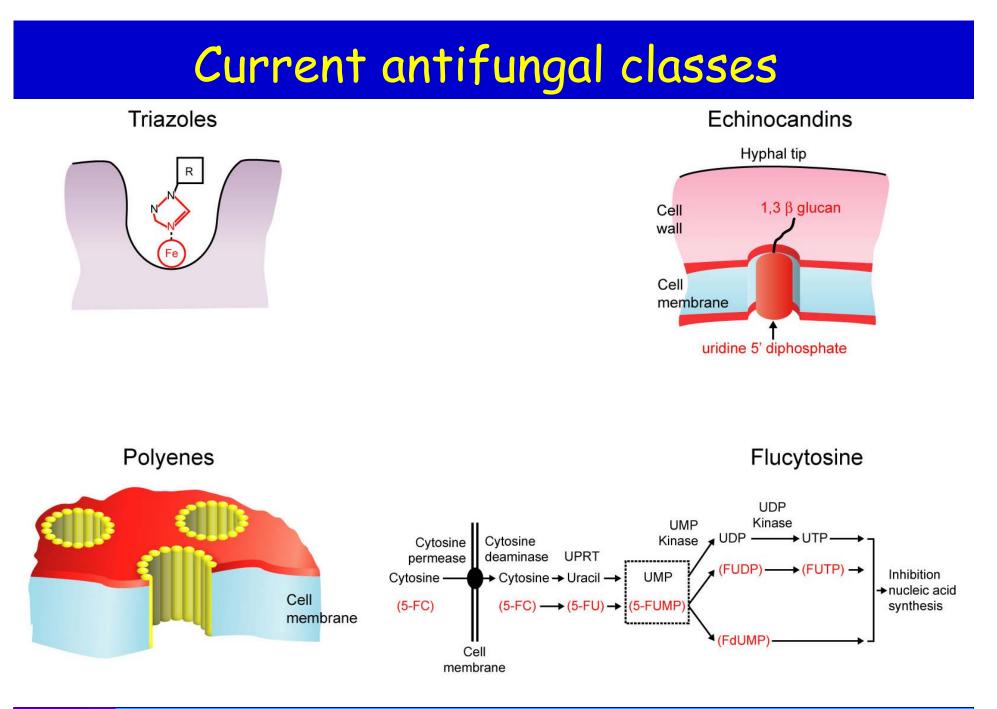
1. Prevent invasive disease?

 \checkmark

- 2. Improve outcomes of invasive disease (immune augmentation)?
- 3. Abolish allergic aspergillosis? [Immunotherapy]

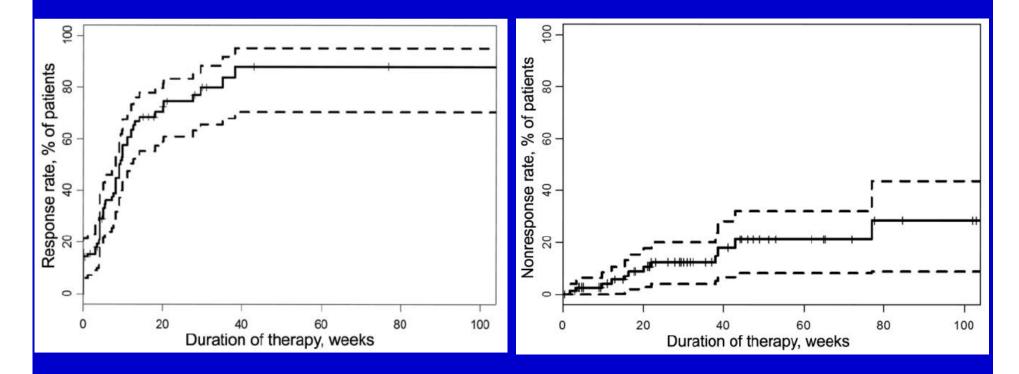
Possible endpoints for a phase 3 Aspergillus vaccine study

- All cause mortality (likely to be insensitive)
- Aspergillosis-free survival (useful, if IA can be excluded)
- Cases of IA (optimal if IA can be reliably diagnosed)
- Time to development of IA (unlikely to be a regulatory endpoint, and implies loss of protection over time)
- Surrogate marker of IA as key endpoint (blood GM or PCR) (applies only to haematology patients; perhaps not specific enough; GM not species specific)


Confounders of endpoints for a phase 3 Aspergillus vaccine study

- Antifungal prophylaxis
- Empiric antifungal therapy
- Mixed fungal or bacterial infection
- non-fumigatus Aspergillus infection (if fumigatus only)
- Ethnic/genetic response characteristics to the vaccine
- Atopic status, including asthma
- Severity and persistence of immunosuppression versus resolution of immunosuppression
- Exaggerated immune response to IA with IRIS-like syndrome, in some vaccinees
- Others

New antifungal agents and resistance



MANCHESTER

Denning & Hope Trends Microbiol 2010;18:195

Posaconazole for chronic pulmonary aspergillosis

Response

Failure and death

Felton Clin Infect Dis 2010;51:1383

Box 1. Priorities for development of novel antifungal agents for the treatment of invasive fungal infections

- Oral compound with activity against all common Candida species (including triazole-resistant strains).
- Parenteral or oral compounds with activity against *Cryptococcus* neoformans and penetration into the central nervous system.
- Parenteral and oral compounds with activity against Aspergillus spp., including triazole-resistant species. Ideally, compounds should have few drug interactions, and should be safe in patients with renal or hepatic impairment.
- Parenteral and oral compounds with activity against rare, but medically important moulds (e.g. Mucorales, Scedosporium spp.).
- Oral agent(s) for the treatment of chronic pulmonary and allergic aspergillosis, with few drug interactions (especially with corticosteroids) and favourable intrapulmonary pharmacokinetics.
- Development of novel formulations of existing compounds that have a more favourable pharmacokinetic properties (e.g. enhanced oral bioavailability)
- Formulations that enable novel uses of existing compounds (e.g. aerosolisation)

MANCHESTER

Research funding for fungal diseases in the UK

from the total spent over the last five years on immunology and infectious disease research

Conclusions

 Clear cut progress in many aspects of medical mycology in last 25 years, especially new drugs, some diagnostics and resistance

- Impact of fungal infection on patients, other than survival, not assessed with standard tools
- Better risk assessment tools, including genetic markers, will allow better protection strategies
- More work required on vaccines
- New antifungals required because of azole resistance, with prospect of routine combination therapies, especially for longterm therapies
- Chronic, relapsing and allergic fungal disease are BIG problems that need more attention