

5th ADVANCES AGAINS lstanbul. Turkev 26-28 January 2012 utfi Kirdar Convention 8

www.AAA2012.org

International Center for Public Health

Update on resistance mechanisms: Highly active triazole antifungal agents

David S. Perlin, PhD

Executive Director and Professor

Public Health Research Institute / New Jersey Medical School

28 January, 2012

COI: Opinion Leader panels and grant support from Merck, Pfizer, Astellas, Celgene and bioMerieux.

In the beginning.....

Antimicrob Agents Chemother. 1997 Jun;41(6):1364-8.

Itraconazole resistance in Aspergillus fumigatus.

Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA, Warnock DW, Kelly SL.

<u>Abstract</u>

In vitro resistance in Aspergillus fumigatus to itraconazole correlated with in vivo outcome has not been previously described. For three isolates (AF72, AF90, and AF91) of A. fumigatus from two patients with invasive aspergillosis itraconazole MICs were elevated. A neutropenic murine model was used to establish the validity of the MICs.The MICs for the three resistant isolates were >16 microg/ml. In vitro resistance was confirmed in vivo for all three isolates. Molecular typing showed the isolates from the two patients to be genetically distinct.....

Drug Susceptibility, ECVs, Break Points and Resistance

Wild-type MIC distributions of three triazoles for six Aspergillus spp. from five laboratories, using CLSI M38-A2 microdilution method

Species	Antifungal agent	Total	No. of isolates With MIC (µg/ml):											
		Totai	≤0.01	0.03	0.06	0.125	0.25	0.5	1.0	2.0	4.0	8.0	16	32
	Itraconazole	2,554		22	114	461	752	963	211	31	(8)	(14)	(15)	
A. fumigatus	Posaconazole	1,647	105	422	430	351	230	96	12	(7)	1			
	Voriconazole	2,778		1	16	123	1,193	1,091	291	39	17	7	(1)	
A. flavus	Itraconazole	536		7	30	151	121	194	31	2	(1)		(1)	
n.javas	Posaconazole			-	132	84	56	13	2	2	(1)		(1)	
	Voriconazole	590			1	15	115	290	158	10	(1)		(1)	
A. terreus	Itraconazole	369		24	48	72	104	73	48					
	Posaconazole	330		19	52	91	126	41		1				
	Voriconazole	462		2		24	99	217	106	10			1	3
A. niger	Itraconazole	427		2	7	13	42	119	178	66	(7)	(31)	(3)	
	Posaconazole	325		15	36	77	61	126	4	6				
	Voriconazole	479		3	5	19	59	174	169	47	3			(1)

Espinel-Ingroff et al. 2010 JCM

MIC distribution and ECVs for three triazoles and six *Aspergillus* spp. from five laboratories as determined by the CLSI M38-A2 microdilution method at 48 h

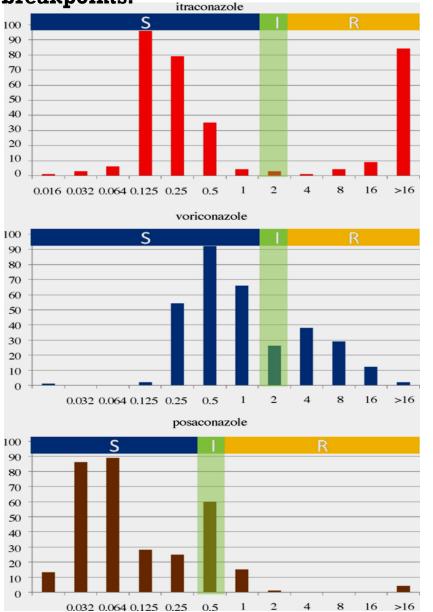
Species	antifungal	(no. isolates)	MIC (ug/ml)	mode (uq	ECV [/ml)	ECV (%)
A. fumig	gatus					
	Itraconazole	(2,554)	≤0.03-2	(0.5)	1	98.8
	Posaconazole	(1,647)	≤0.015 -	4 (0.06)	0.5	99.2
	Voriconazole	(2,778)	0.03-≥4	(0.25)	1	97.7
A. flavu	S					
	Itraconazole	(536)	0.03-2	(0.5)	1	99.6
	Posaconazole	(321)	≤0.03-2	(0.06)	0.25	94.7
	Voriconazole	(590)	0.06-4	(0.5)	1	98.1
A. terre	us					
	Itraconazole	(369)	0.03-1	(0.25)	1	100
	Posaconazole	(330)	≤0.03-2	(0.25)	0.5	99.7
	Voriconazole	(462)	0.03->4	(0.5)	1	99.1
A. niger						
	Itraconazole	(427)	0.03-2	(1)	2	100
	Posaconazole	(325)	≤0.03-2	(0.5)	0.5	96.9
	Voriconazole	(479)	≤0.03-4	(0.5)	2	99.4

Espinel-Ingroff et al. 2010 JCM

CLSI Clinical Breakpoints and ECVs

- Clinical breakpoints are not available for mold testing by the CLSI methodology versus any antifungal agent.
- In the absence of clinical breakpoints, ECVs provide guidance to characterize the susceptibility of Aspergillus isolates to itraconazole, posaconazole, and voriconazole

EUCAST: Proposed interpretative breakpoints* for *A. fumigatus* and highly active azoles.

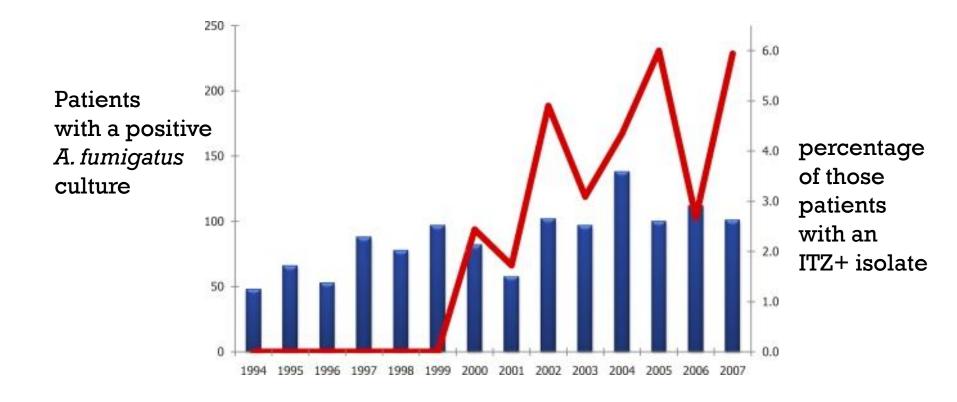

Drug	Susceptible	Intermediate	Resistant
Itraconazole	<2	2	>2
Voriconazole	<2	2	>2
Posaconazole	<0.5	0.5	>0.5

(MIC, mg/L)

*Breakpoints based on MIC distributions, pharmacokinetic and pharmaco-dynamic (PK/PD) parameters, animal data, and clinical experience have been proposed for the EUCAST reference method for *A. fumigatus* and the three triazoles.

Verweij et al. DRU 12 (2009) 141

Relationship between MIC distribution of 325 consecutive MIC determinations of clinical *A. fumigatus* isolates from the Nijmegen fungus culture collection and the proposed breakpoints.


Verweij et al. DRU 12 (2009)

Multiple-Triazole–Resistant Aspergillus fumigatus

Sex	Yr of Age	Underlying Disease	Date of Isolation	Site of Isolation	Disease Classification*	Previous Azole Exposure	Treatment	Outcome
Male†	15	X-linked chronic granuloma- tous disease	April 4, 2002	Sputum	Breakthrough invasive pulmo- nary aspergillosis, proven	Prophylaxis with itra- conazole (for 6 yr)	Voriconazole (high-dose)	Survived
Male	73	None	Dec. 3, 2003	Ear swab	Invasive aspergillosis of mastoid cavity, proven	None	Surgery and topical therapy	Survived
Male	16	Hyper-IgE syndrome	Nov. 19, 2004	Bronchoalveolar- lavage fluid	Breakthrough invasive pulmo- nary aspergillosis, proven	Treatment with vori- conazole (for 2 yr)	Surgery and posacon- azole	Survived
Female	76	Pulmonary fibrosis	June 26, 2005	Sputum	Invasive pulmonary aspergil-	None	Voriconazole	Survived
Male	31	Chronic granulomatous disease	Nov. 1, 2005	Lung aspirate	Breakthrough invasive pulmo- nary aspergillosis, probable	Prophylaxis with itra- conazole (for >10 yr)	Caspofungin and posaconazole	Survived
Female	68	Acute myeloid leukemia	Feb. 14, 2006	Bronchoalveolar- lavage fluid	Disseminated invasive asper- gillosis, probable	None	Voriconazole	Died
Female	62	Chronic obstructive pulmo- nary disease	April 5, 2006	Bronchoalveolar- lavage fluid	Invasive pulmonary aspergit losis, possible	None	Voriconazole, amphoteri- cin B, and posacon- azole	Survived
Male	19	Chronic granulomatous disease	April 15, 2006	Bone	Breakthrough aspergillus osteomyelitis, proven	Prophylaxis with itra- conazole (for >2 yr)	Voriconazole, caspofun- gin, and posacon- azole	Survived
Male	45	Acute myeloid leukemia and allogeneic hematopoietic stem-cell transplantation	May 11, 2006	Nose swab	Breakthrough aspergillus sinusitis, proven	Prophylaxis with itra- conazole (for 4 wk)	Posaconazole	Died

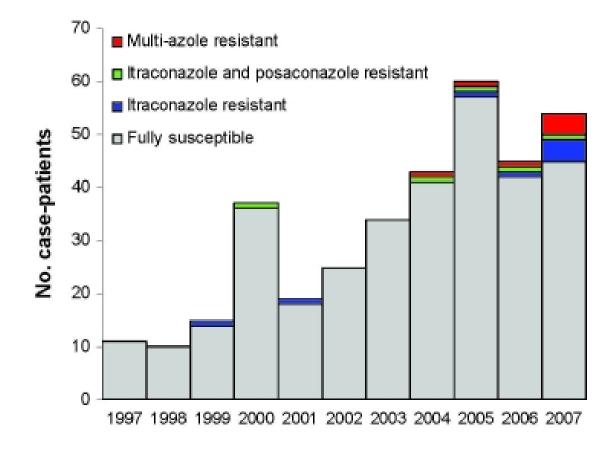
Factors: Extended duration prophylaxis with itraconazole or therapy with voriconazole; Inherent resistance dominated by a single mechanism Leu98/TR Verweij et al. 2007 NEJM

Epidemiology of ITZ Resistance in the *A. fumigatus* **Isolates from Nijmegen Medical Center**

Snelders et al. PLoS Med₋ (2008).

Emerg Infect Dis. 2011 Oct;17(10):1846-54.

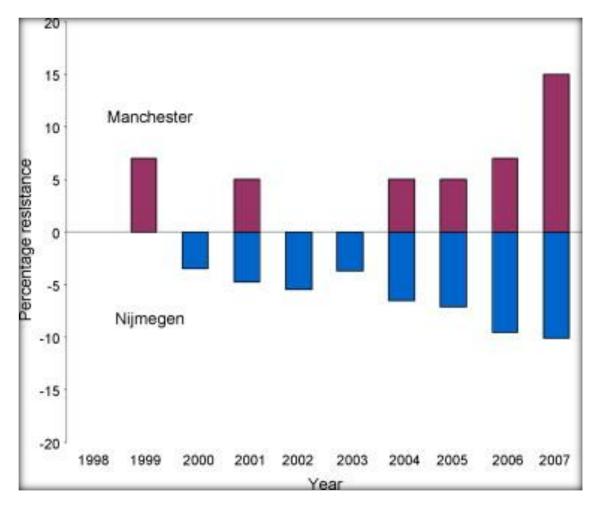
Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007-2009.


van der Linden JW, Snelders E, Kampinga GA, Rijnders BJ, Mattsson E, Debets-Ossenkopp YJ, Kuijper EJ, Van Tiel FH, Melchers WJ, Verweij PE.

From June 2007 through January 2009, all clinical Aspergillus spp. isolates were screened for itraconazole resistance. In total, 2,062 isolates from 1,385 patients were screened; the prevalence of itraconazole resistance in *A. fumigatus* in our patient cohort was 5.3% (range 0.8%-9.5%).

Patients with a hematologic or oncologic disease were more likely to harbor an azole-resistant isolate than were other patient groups (p<0.05). Most patients (64.0%) from whom a resistant isolate was identified were azole naive, and the case-fatality rate of patients with azole-resistant invasive aspergillosis was 88.0%.

Multiazole resistance in *A. fumigatus* is widespread in the Netherlands and is associated with a high death rate for patients with invasive aspergillosis.

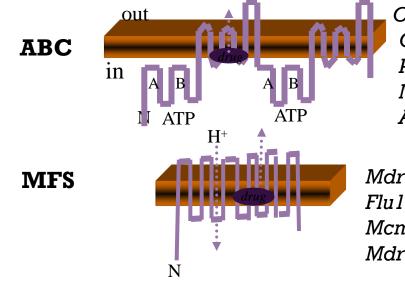

Azole resistance in clinical *A. fumigatus* isolates received in Regional Mycology Lab Manchester, UK, 1997–2007.

Multiazole resistant isolates are on the rise.

Howard et al. EID (2009)


Percentage of patients with azole-resistant *A. fumigatus* strains in Manchester, UK and Nijmegen, the Netherlands (1998–2007).

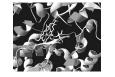
Verweij et al. DRU 12 (2009) 141

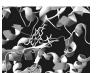

Known azole resistance mechanisms

I. Alteration of Drug Target

Ergll Candida spp. Erq5 Candida spp. Cr. neoformans Ergll Cyp51A Aspergillus spp.

II. Over-expression of Efflux Transporters

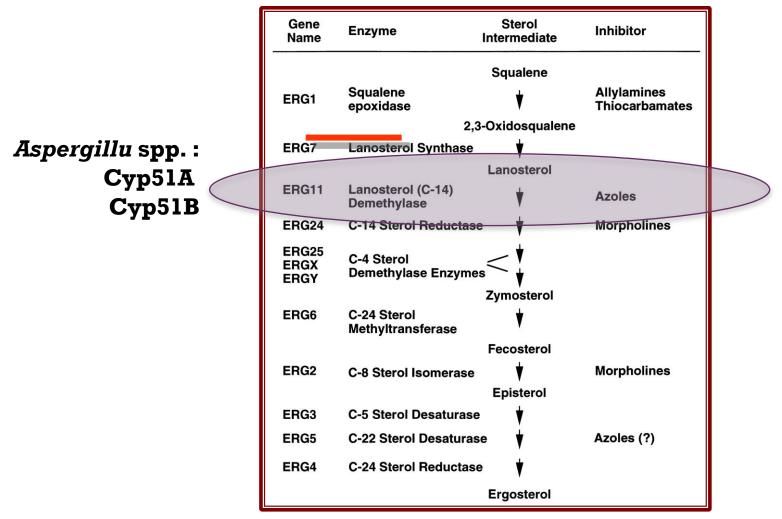

Cdr1. C. albicans Cdr1 C. glabrata Pdh1 C. glabrata *Mdr1,2,4 A. fumigatus* Afrl C. neoformans


Mdr1 C. albicans Flul C. albicans Mcm1 C. albicans Mdr3 A. fumigatus

IV. Chromosomal duplications C. albicans

V. Transcription factors Drug pumps Erg 11

Over-expression of Target Site III.



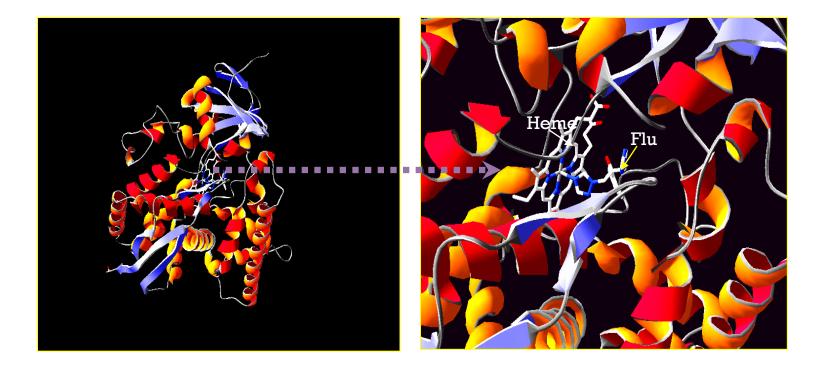
Ergll Candida spp. Cyp51A A. fumigatus

Prominent amino acid substitutions in the target site, lanosterol demethylase encoded by Cyp51A, account for >80% of acquired resistance in *A. fumigatus*.

Ergosterol Biosynthesis: Azole Inhibition

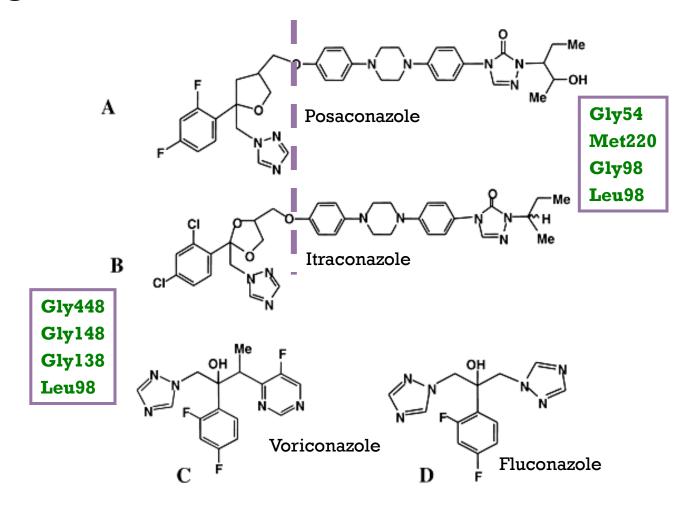
Influence of most prominent azole-resistant Cyp51A genotypes on susceptibility of *A. fumigatus* to highly active triazole antifungal agents

Genotype	MIC (mg/L) Phenotype		nenotype	Referenceª	
	ITR	VOR	POS	1	
L98H+TR	>8	0.5 to >8	0.5–4	Mellado et al. (2007), Hodiamont et al. (2009), Van der Linden et al. (2009)	
G54	>8	0.125–1	1 to >8	Chen et al. (2005), Mann et al. (2003), Diaz- Guerra et al. (2003), Nascimento et al. (2003), Howard et al. (2006c), Manavathu et al. (2003)	Environme: acquired
G138	>8	2 to >8	1 to >8	[Howard et al., 2006b] and [Howard et al., 2006c], Manavathu et al. (2003)	
M220	>8	0.5–4	0.125 to >8	Mellado et al. (2004), Chen et al. (2005), Diaz- Guerra et al. (2003), Howard et al. (2006c)	
G448	>8	>8	0.5–2	Manavathu et al. (2003)	

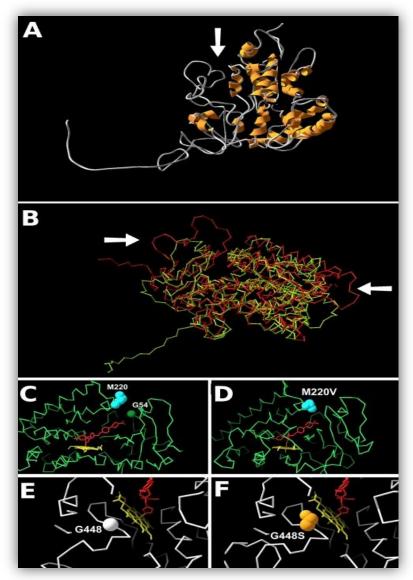

Acquired during therapy

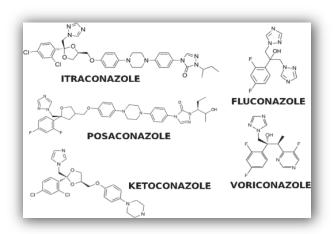
Verweij et al. DRU 12 (2009) 141

Reported Cyp51A amino acid substitutions and associated cross-resistance patterns in azole-resistant RMLM *Aspergillus fumigatus* isolates

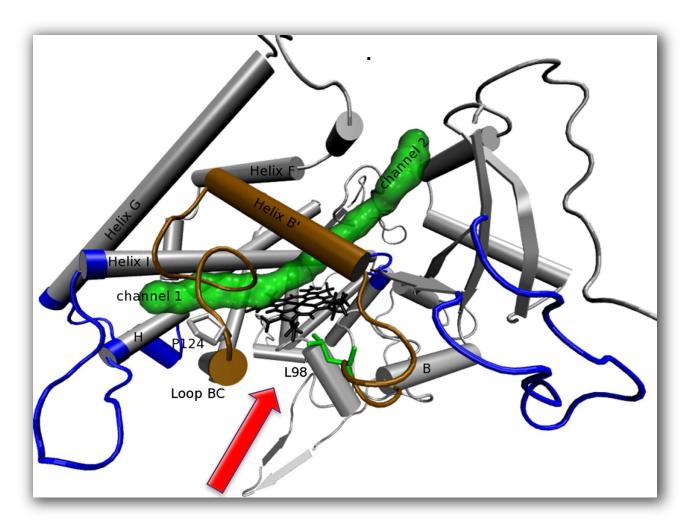

					MIC, mg/	ΊL
Cyp51A	Patients	Isolates	AA subst	Itra	Vori	Posa
F46‡	3	4	Y	>8	2–4	0.125-0.5
G54	4	5	E , R , V	>8	0.125–1	1->8
L98+TR	2	2	Н	>8	8	1–2
G138	1	10	С	>8	8->8	2->8
H147§	1	1	Y	>8	>8	0.5
M172‡	3	4	V	>8	2–4	0.125-0.5
P216	1	1	\mathbf{L}	>8	1	1
M220	3	4	К, Т	>8	1–4	0.5–>8
N248‡	1	1	Ť	>8	2	0.25
D255‡	1	1	Ε	>8	2	0.25
E427‡	4	5	G, K	>8	2–4	0.125-0.5
Y431	1	1	Ć	>8	4	1
G434	1	1	С	>8	4	1
G448	2	2	S	>8	>8	0.5–1
No subst	2	3	NA	>8	2-8	0.25–1

Target site mutations alter the binding of azoles to the active site where it coordinates the heme iron as sixth ligand.



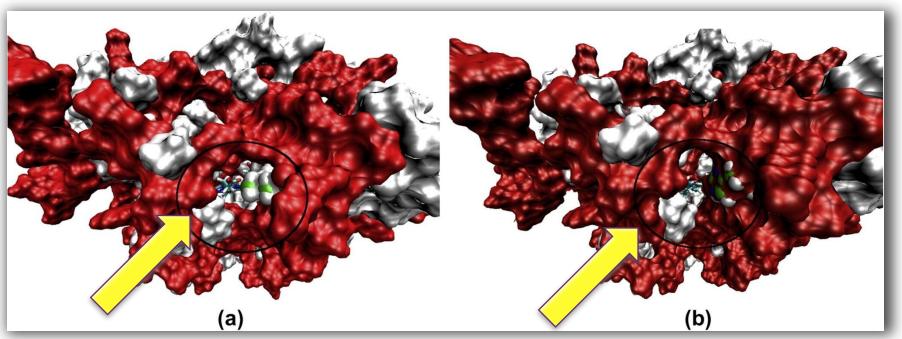

Podust et al. 2001 PNAS

Different spectrum of mutations identified for triazole drugs consistent with chemical structure


Models of prominent CYP51A and azole resistanceassociated amino acid variants.

Fraczek, Bromley Bowyer 2011 AAC

Model of CYP51A with Leu98 highlighted.



Heme cofactor is in black, the two channels are filled with green

Snelders et al. 2010 AAC

L98H changes relative hydrophobicity of local environment

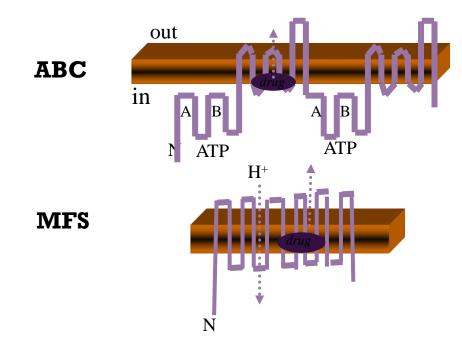
WT

Leu98

Surface representation of hydrophobic (white) versus hydrophilic (red) residues of the CYP51A protein in wild type situation (a) and mutated situation (b).

Snelders FGB 2011

MIC of mutant *A. fumigatus* strains with different cyp51A amino acid substitutions at Leu98


EUCAST			MIC (mg/ml) 48 h			
	TR	Gene	ITC	VCZ	POS	
akuBKU80 recipient stra	in		0.5	0.25	0.25	
akuBKU80 cassette	-		0.5	0.25	0.25	
akuBKU80-G54W	-	G54W	>16	0.25	>16	
akuBKU80-TR	+	-	1	2	0.5	
akuBKU80-L98H	-	L98H	1	1	0.5	
akuBKU80-TR L98H	+	L98H	>16	2	0.5	
akuBKU80-TR L98R	+	L98R	>16	2	0.5	
akuBKU80-TR L98Y	+	L98Y	>16	1	0.5	
akuBKU80-TR L98Q	+	L98Q	>16	2	0.5	
akuBKU80-TR L98I	+	L98I	>16	1	0.5	
		here to real array was				

TR: 34 bp tandem repeat in the promoter region,

Promoter modification (TR) in conjunction with changes in Cyp51A at Leu98 are required to confer resistance

Snelders FGB 2011

Do drug transporters play a role in resistance?

MFS and ABC transporters in various fungal genomes

A. fumigatus	A. nidulans	A. oryzae	S. cerevisiae	S. pombe	C. albicans
32	31	36.7	13	14	13
10,003	10,003	14,063	6,309	4,916	9168
278	357	508	84	57	71
64	76	125	14	20	
32	41	65	10	6	
49	47	72	24	10	28
35	34	57	13	1	
	fumigatus 32 10,003 278 64 32 49	fumigatusnidulans323110,00310,003278357647632414947	fumigatusnidulansoryzae323136.710,00310,00314,0632783575086476125324165494772	fumigatusnidulansoryzaecerevisiae323136.71310,00310,00314,0636,309278357508846476125143241651049477224	fumigatus nidulans oryzae cerevisiae pombe 32 31 36.7 13 14 10,003 10,003 14,063 6,309 4,916 278 357 508 84 57 64 76 125 14 20 32 41 65 10 6 49 47 72 24 10

Numerous putative transporters are known, but only a small number: 3 ABC (MDR1;2; 4) and 1 MFS (MDR3) contribute to resistance phenotypes

Cellular regulation of drug pumps and/or drug target (Cyp51A) leading to resistance

C. albicans

- Tacl controls CDR1 expression (Coste et al. 2004 Eukaryot. Cell)
- Mrrl controls MDR1 expression (Morschhäuser et al. 2007 PLoS Pathog)
- Upc2/Ecm22 induce expression of Erg genes upon sterol depletion (Silver, Olivder and White 2004 Eukar. Cell)
- PDR1 upregulates *C. glabrata* including *CDR1* and *PDH1*. Mitochondrial loss is an activator of PDR1 (Vermitsky et al. 2004 AAC; 2006 Mol. Microbiol)

A. fumigatus

- Rocha et al. 2007. AzRF1 (Cys6 TF) confers triazole resistance.. target is unknown (Rocha AAC 2007)
- SREBP (Blosser and Cramer, AAC 2012)
- Others?
- Up-regulation of Cyp51A (TR/Leu98) and others (sa Silva AAC 2004; Nascimento et al. 2003; Arendrup e al. PLoS One 2010; Albarrag et al. AAC 2011)

M. Bromley et al. AAA2012 Poster 20

The Systems Biology of Azole Resistance in *Aspergillus fumigatus*

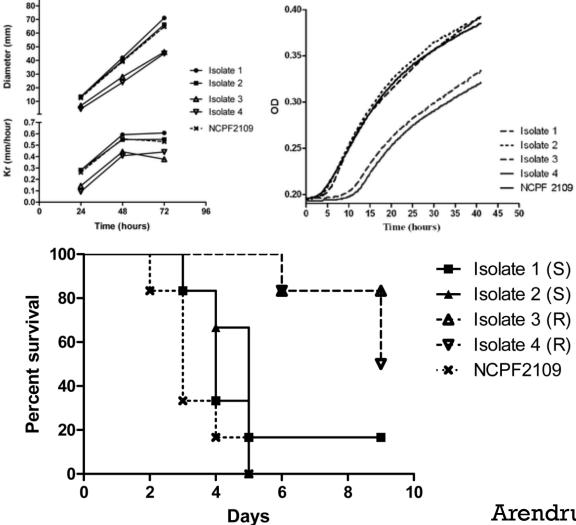
Methods: Multi-omic approach:

Illumina sequencing of Itr resistant isolates; RNAseq +/- drug Satn transposon mutagenesis HTP gene KOs.

Results:

9 novel genes/pathways;2 new transportersUp-regulation of Cyp51B

What about other prominent mechanisms of reduced susceptibility?


- Biofilms: drug pumps, gluan and nucleic acid sink for azoles; sterol regulation for high resistance (Mukheriee et al. 2003 Infect. Immun; da Silva Ferrieira et al. AAC (2004); Rajendran et al. AAC 2011; Rajendran et al. AAA 2012 Poster 14)
- HSP90/Calcineurin inhibitors (cyclosporin A and FK-506) (Cowen Science 2005; Eukar. Cell 2006; Lamoth et al. AAA 2012 Poster132)

Not relevant in Aspergillus

Isochromosome ([i(5L)] i), two left arms of chromosome 5, amplifyies ERG11 and TAC1 (Selmecki, Forche and Berman 2006 Science; Selmecki et al. 2008 Mol. Miobiol.)

Is resistance self-limiting?

Development of azole resistance in *A. fumigatus* during azole therapy is associated with reduced virulence.

Arendrup PLoS One.(2010)

Limited spectrum of mutations in Cyp51A associated with multi-azole resistance is ideal for molecular assessment of drug resistance

Rapid diagnosis of azole-resistant aspergillosis by direct PCR using tissue specimens.

van der Linden JW, Snelders E, Arends JP, Daenen SM, Melchers WJ, Verweij PE. J Clin Microbiol. 2010 Apr;48(4):1478-80.

Garcia-Effron et al. JCM 2008;Balashov et al. JCM 2005

High-frequency triazole resistance found In nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease.

Denning DW, Park S, Lass-Florl C, Fraczek MG, Kirwan M, Gore R, Smith J, Bueid A, Moore CB, Bowyer P, Perlin DS. Clin Infect Dis. (2011) 52(9):1123-9;

Table 1

Aspergillus culture, qPCR and A. fumigatus resistance mutation detection in 4 study populations.

Laboratory result	ABPA	СРА	IPA	Normals
Culture positive for <i>Aspergillus</i> spp.	0/19	7/42	20/22	0/11
	0/17	(16.7%)	(90.9%)	0/11
Culture positive for A. fumigatus	0/19	7/42	10/22	0/11
	0/17	(16.7%)	(45.5%)	0/11
qRT PCR positive for <i>Aspergillus</i>	15/19	30/42	21/22	4/11
spp	(78.9%)	(71.4%)	(95.5%)	(36.4%)
A. fumigatus CYP51A mutation			_	
detected directly from qPCR positive	6/8 (75%)	12/24 (50%)	NT ^a	NT ^a
sample				

ABPA = allergic bronchopulmonary aspergillosis; CPA = chronic pulmonary

aspergillosis; IPA = invasive pulmonary aspergillosis

a = Not tested (insufficient sample remaining)

Molecular probing improves detection sensitivity with a simultaneous assessment of resistance. Is resistance more prevalent than currently reported?

Denning et al. CID 2011

Will the global spread of resistant isolates render azole drugs useless?

Future Microbiol. 2011 Mar;6(3):335-47. **Azole resistance in Aspergillus fumigatus: a new challenge in the management of invasive aspergillosis?**

Snelders E, Melchers WJ, Verweij PE.

Future Microbiol. 2011 Nov;6(11):1229-32. **Azole resistance in Aspergillus: a growing** public health menace.

Denning DW, Perlin DS.

Open Questions

- Is there a fitness cost to resistance?
- Why is acquired resistance found readily with chronic disease but rarely with acute infections?
- Is resistance strictly related to time in presence of drug? Does the drug matter?
- Does stress (host pressure) promote resistance?
- Will the global spread of the TR/L98 resistance mechanism render existing azole drugs useless?

PERLIN Lab: Resistance Group

Ayiasha Pratt

Steven Park

Cristina Jiménez-Ortigosa Paderu

Padmaja Yanan Zhao

Former Members

Guillermo Garcia-Effron Ana Alastruey-Izquierdo Steven Cagas Sergey Balashov

Collaborators

David Denning Manchester Sue Howard Manchester Maiken Arendrup SSI

Eveline Snelders Nijmegen

Supported by NIH/NIAID