Cultivated anti-Aspergillus T_H1 Cells

Thomas Lehrnbecher

Pediatric Hematology and Oncology Frankfurt/Main, Germany

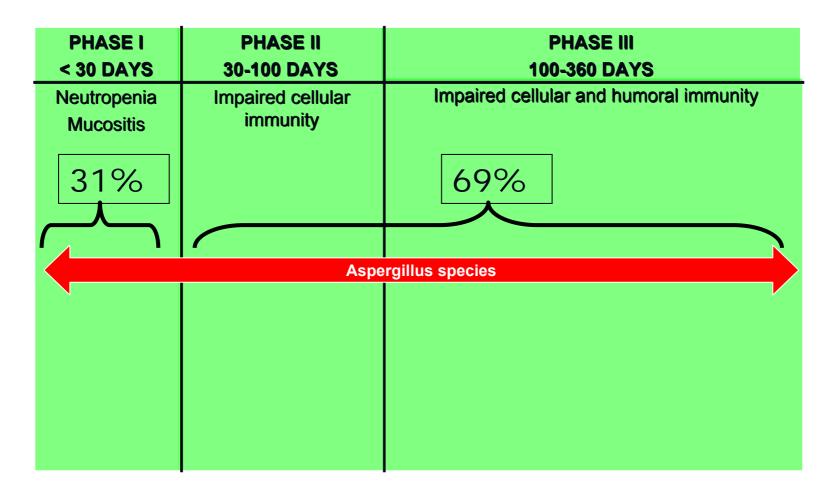
Invasive fungal infection after allogeneic SCT

Incidence of proven invasive fungal infections after allogeneic SCT ~15 % Mortality 50% to 90 %

A.fumigatus, less frequently *A.flavus* or *A.terreus* seen as causing pathogen

Hebart et al. *Support Care Cancer* 2004 Lin et al. *Clin Infect Dis* 2001

Risk factors for invasive aspergillosis

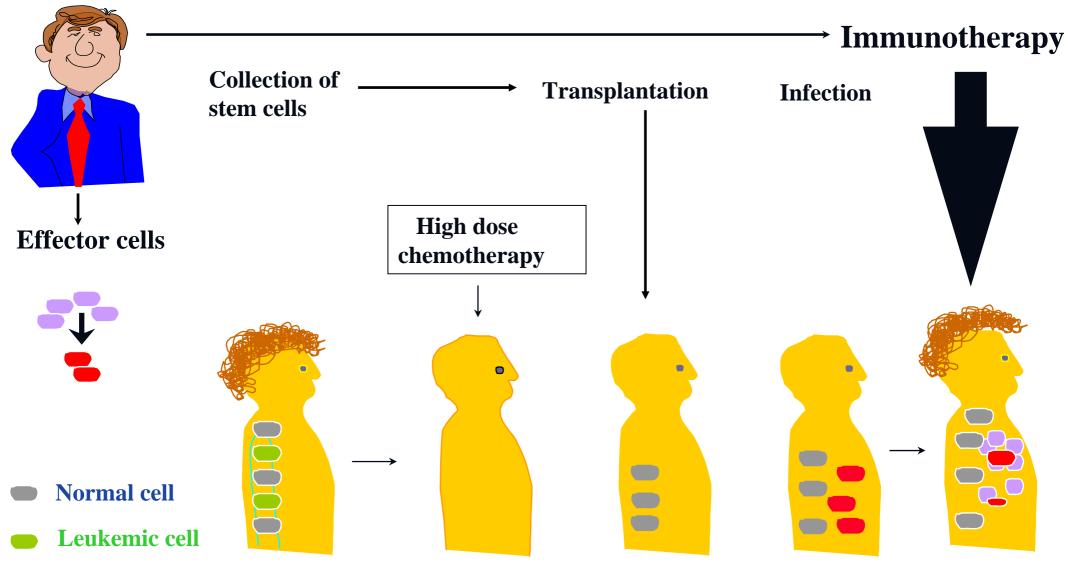

Exposure

Severe mucositis Broad-spectrum antibiotics

Prolonged neutropenia Defects of phagocyte function (e.g., steroids)

Defects of adaptive immunity (e.g., T-cell deficiency)

Invasive aspergillosis after SCT


American Society for Blood and Marrow Transplantation, 2000 Wald et al. J Infect Dis 1998

T-cells and invasive fungal infection

- Aspergillus fumigatus antigens are capable to induce $T_H 1$ (IFN- γ , IL-2, TNF- α) or $T_H 2$ response (IL-4, IL-5, IL-10)
- Patients with invasive aspergillosis and T_H^1 response (increased IFN- γ , low IL-10) have a better outcome than patients with T_H^2 response (low IFN- γ , increased IL-10)
- Adoptive transfer of dendritic cells pulsed with *Aspergillus* conidia increase resistance to invasive aspergillosis in mice

Kurup et al *Peptides* 1996 Hebart et al *Blood* 2002 Bozza et al *Blood* 2003

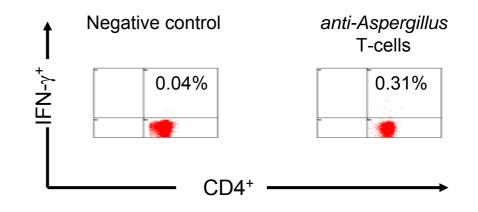
Principle of adoptive immunotherapy after SCT

Aspergillus

Anti-Aspergillus T-cells in transplant patients

Transfusion of anti-*Aspergillus* T-cells in 10 patients after haploidentical SCT with evidence of invasive aspergillosis (e.g., pneumonia, positive galactomannan antigenemia)

Immunotherapy 17-37 days after transplantation


Galactomannan antigenemia resolved in all patients within 6 weeks of infusion (P<.002 versus controls)

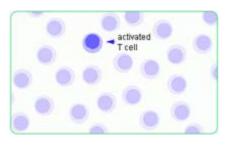
1/10 patients died vs 6/13 controls not receiving immunotherapy

Generation of anti-Aspergillus T_H 1-cells by limiting dilution (minimum time required: 25 days)

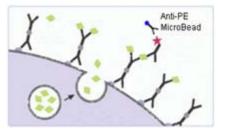
Objectives

• Rapid generation of T-cells against *Aspergillus* spp. possible?

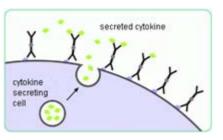
• Specificity of generated T-cells?

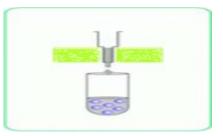

Beck et al. submitted

- Alloreactivity (risk of GvHD) of selected T-cells?
- Antifungal activity of purified and expanded T-cells?
- Clincial-scale generation of anti-*Aspergillus* T-cells feasible?

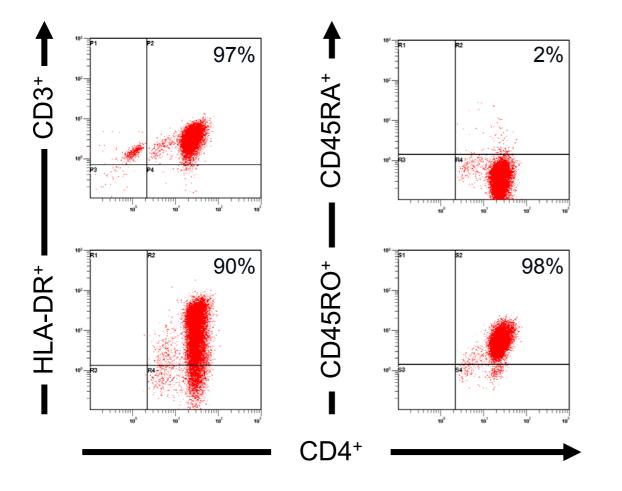

Isolation and expansion of anti-Aspergillus T-cells

50-100 ml peripheral blood


Stimulation with Aspergillusantigen(s)

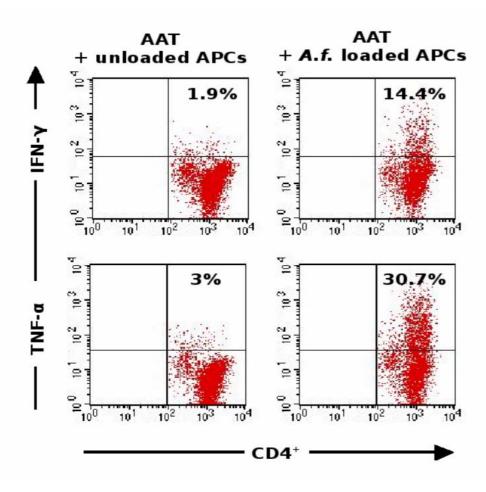

Cytokine-secreting cells are magnetically labelled with MicroBeads

Only antigen-specific T-cells are activated to produce cytokines

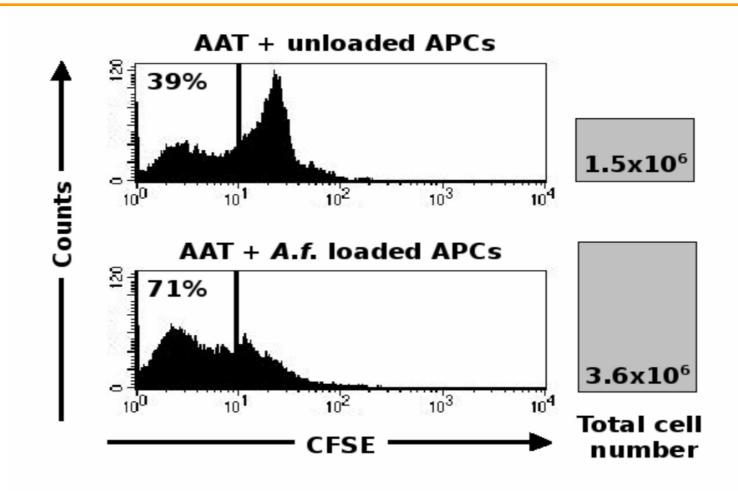


Selection over magnetic column

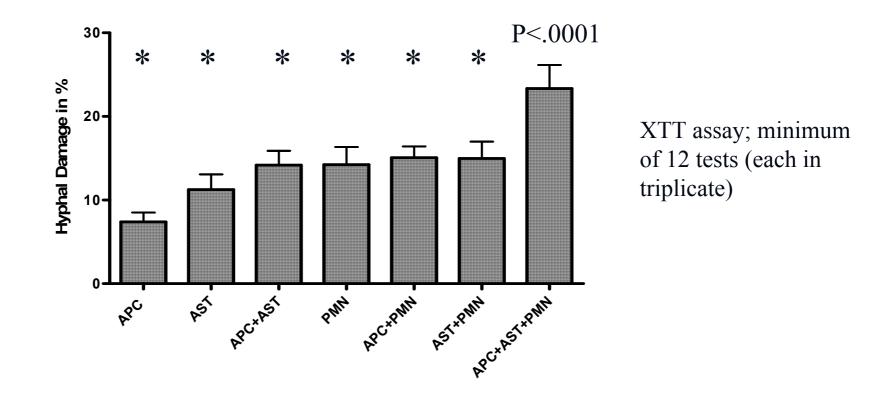
anti-*Aspergillus* T-cells Culture and expansion Characterization and functional tests


Immunophenotype of anti-Aspergillus T-cells

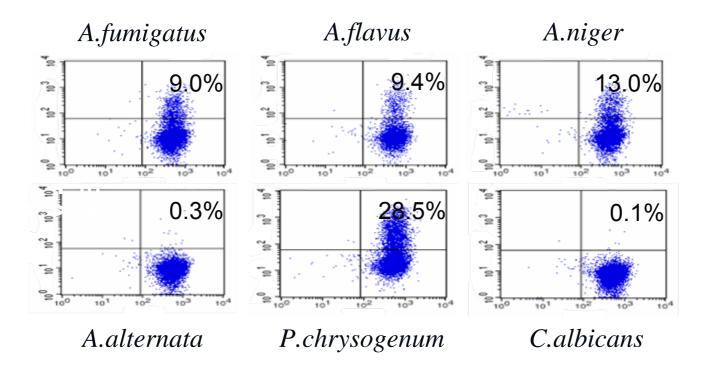
Number of generated cells after 10-14 days: median $1.1 \times 10^7 (0.4 - 2.8 \times 10^7; n=7)$


Phenotype:		
CD3:	>97%	
CD4:	>97%	
CD45RO:	>97%	
HLA-DR:	>90%	
\rightarrow activate	ed memory T-cells	

Cytokine secretion of anti-Aspergillus T-cells


Cytokine secretion upon restimulation: IFN- γ , TNF- α No IL-4, IL-10 T_{H}^{-1} cells

Proliferation upon restimulation


- \rightarrow Generated T-cells not terminally differentiated
- → Further expansion of anti-Aspergillus T-cells in vivo to be expected if stimulated by Aspergillus-antigen presenting cells

Killing of A.fumigatus hyphae

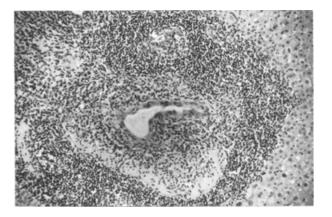
→ Combination of PMNs, T-cells and APCs exhibited highest hyphal damage
→ Hyphal damage also by T-cells alone (mechanism?)

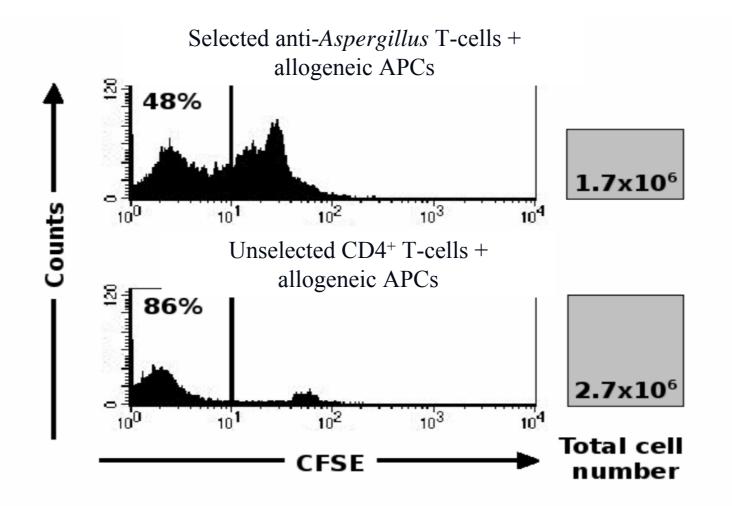
Specificity of anti-Aspergillus T-cells

Cross-reactivity might be of clinical advantage, in particular since isolation of the pathogen not possible in most cases!

Donor T-cells and Graft-versus Host Disease

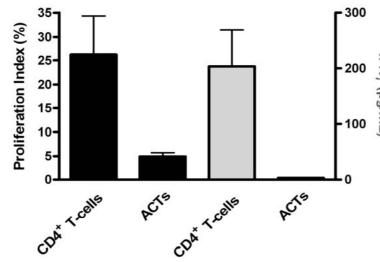
GvHD results from reactivity of donor T-cells against recipient (host) tissue


 \rightarrow activation of alloreactive T-cells and production of inflammatory cytokines


Skin

Liver (e.g., bilirubin↑)

Gut (e.g., diarrhea, pain)



Alloreactivity of anti-Aspergillus T-cells

→ Purified anti-Aspergillus T-cells coincubated with allogeneic APC's with lower proliferation response than unselected CD4+ cells

Reduced alloreactivity of anti-Aspergillus T-cells

Purified anti-Aspergillus T-cells coincubated with allogeneic APC's with lower IFN- γ secretion than unselected CD4+ cells

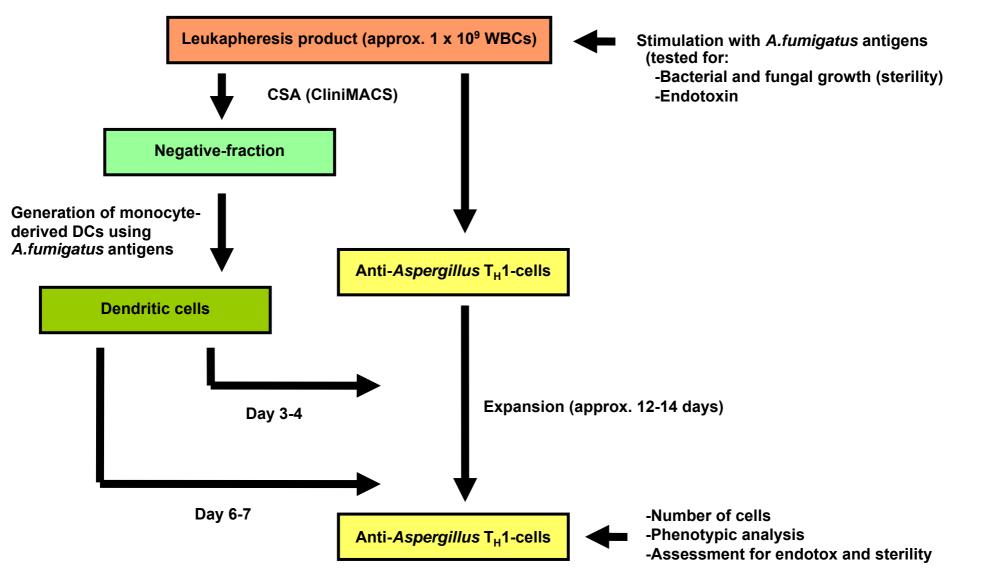
In vitro data indicate that purified anti-*Aspergillus* T-cells have a marked reduction of alloreactivity compared to unselected T-cells

Clinical-scale generation of anti-Aspergillus T-cells

For testing adoptive immunotherapy with anti- *Aspergillus* T-cells (,,drug") → generation of cells according to good manufacturing practice (GMP)

GMP-conditions include

- Special, approved facility (Institute of Transfusion Medicine, Frankfurt)
- Approved material (e.g., clincal-scale CliniMACS device, closed system, GMPgrade serum and cytokines)
- Extensive controls (e.g., endotoxin, contamination)



Leukapheresis

Isolation of anti-Aspergillus T-cells

Clinical-scale generation of anti-Aspergillus T-cells

Tramsen et al. submitted

Clinical-scale generation of anti-Aspergillus T-cells

Generated cells*	Total number of cells (WBCs-CD45 ⁺) (median, range) [x10 ⁶]	Viable** CD3 ⁺ CD4 ⁺ T-cells (median, range) [x10 ⁶]
After culture	22 (13-37)	19 (8-31)
After cryopreservation	8 (7-12)	6 (6-10)

* three independent experiments** assessed by 7-AAD staining

Summary

- Generation of functionally active anti-Aspergillus T_H 1-cells is feasible GMP conditions \rightarrow clinical application in prophylaxis and therapy
- Anti-Aspergillus T-cells expand after restimulation with Aspergillus antigens
- Anti-Aspergillus T-cells can be stimulated by different Aspergillus species, but not by antigens of *Candida* spp or *Alternaria alternata*
- Anti-*Aspergillus* T-cells show reduced alloreactivity compared with that of the original cell population
- Anti-*Aspergillus* T-cells increase hyphal damage induced by human neutrophils

Open questions

- Which patient population will benefit from immunotherapy with anti-*Aspergillus* T-cells?
- When and how often to infuse anti-*Aspergillus* T-cells?
 - \rightarrow (Secondary) prophylaxis for highest risk patients?
 - \rightarrow Therapeutic strategy?
- Adequate number of anti-*Aspergillus* T-cells to be given?
 - \rightarrow Efficacy
 - \rightarrow Safety
- Interaction with/influence by antimycotic compounds?

Acknowlegment

University of Frankfurt

Lars Tramsen Olaf Beck Frauke Roeger Mitra Hanisch Ulrike Koehl Thomas Klingebiel

Institute for Transfusion Medicine, Frankfurt Torsten Tonn Erhard Seifried University of Thessaloniki

Emmanuel Roilides Maria Simitsopoulou

Institut Pasteur, Paris Jean-Paul Latgé Jacqueline Sarfati

University of Würzburg, Hermann Einsele Max Topp

Deutsche Leukämie Forschungshilfe (DLFH)

Thank you for your attention!