

Proteome analysis for pathogenicity and new diagnostic markers

Olaf Kniemeyer Department of Molecular and Applied Microbiology and Friedrich Schiller University, Department of Microbiology/Molecular Biology, Jena

Outline

- I. Introduction
- II. Proteome map of A. fumigatus
- III. Pathogenomics: Stress response of A. fumigatus to ROI
- IV. Proteomics and diagnosis of IA

Stress and host defence during infection

1. Alveolar macrophages — ROI and low pH

(Behnsen et al. 2007)

2. Neutrophilic granulocytes —> ROI and defensins

Proteomic approach to study virulence

Some virulence determinants were found by genetic approaches, but the pathogenicity of *A. fumigatus* is a multifactorial process

Goal: Identification of regulatory networks and proteins important for stress tolerance and virulence.

Proteomics Workflows

Department Molecular and Applied Microbiology

Which proteins do we find in 2D-gels?

Problem: High dynamic range of protein concentrations of around 10⁵

Department Molecular and Applied Microbiology

Proteome map of A. fumigatus

pH 3-11 NL

ROS response in *A. fumigatus*

Role for pathogenicity?

Lessing et al. (2007)

2D-gel electrophoresis with DIGE

Upregulated proteins in *A. fumigatus* under H₂O₂ stress

Protein	fold-change					
Proteins with antioxidant properties						
Allergen Asp F3	10.3*					
Antioxidant protein LsfA	3.7					
Cu/Zn superoxide dismutase	2.7					
Catalase I	1.3					
Heat shock						
30 kDa heat shock protein	2.5					
Pentose phosphate pathway						
Transketolase TktA	2.1*					
Transaldolase	2.3*					
Glycolysis and TCA cycle						
Glyceraldehyde-3-phosphate-DH	2.3*					
Pyruvate-DH	3.2*					
Polyamine pathway						
Spermidine synthase	2.9					
Unclassified and proteins of unknown function						
GMC-oxidoreductase	6.2					

Red = putative Yap1 binding site

Downregulated proteins in *A. fumigatus* **under** H_2O_2 **stress**

Protein	fold-change
Proteins with antioxidant properties	
Cytochrome C peroxidase	-2.0
Proteases	
Pitrilysin family metalloprotease Cym1	-2.0
Fatty acid, alcohol and lipid metabolism	
Zn-dependent alcohol dehydrogenase	-2.1
Amino acid metabolism	
Glutamine synthetase	-2.0
Carbamoylphosphate synthase	-2.2
Cytoskeleton	
Actin interacting protein 2	-3.1
Beta-tubulin	-1.9
Topomyosin	-1.7
Trehalose, glycogen, beta-glucan metaboli	sm
UDP-glucose-pyrophosphorylase	-2.1*
Unclassified and proteins of unknown fund	ction
NAD-(FAD)-dependent dehydrogenase	-2.1

Red = putative Yap1 binding site

Yap1 homologue in A. fumigatus (Afyap1)

bZIP

	50	60	70	80	90 1	00
yap1p	GEDSEQPKKK	GSKTSKKQDL	DPETKQKRTA) NR AAQ RAFRI	ERKERKMKELEI	KVQSLESI
	:					
A.f.	GKKRRE SDEK	AAKKP GR KPL	TSEPTSKRKA)NR AAQ RAFRI	ER KE KHL KD LE J	KVEELQKA
Yap1	140	150	160	170	180	190
		10000000				1070700
10135-00403	110	120	130	140	150	160
yap1p	QQQNEVEATF	LRDQLITLVN	IELKKYRPETRI	IDSKVLEYLAI	RDPNLHFSKNI	IVNHSNSEP
					. : . ::.:	
A.I.	SDNANUENGL	LKAUVERLUL 210	ELKEYRKRLS	ALCOLLC21	LETNTŲTSKSI	IUN KAKDNP
rapı	200	210	220	230	240	200
	170	180	1 9 0	200	210	220
van1n	TDTPNDDTOF	NVKOKMNETE	OVPL.DNDNDN	NSKNVGKOLI	SPNDP-SHSAF	MPINOTOK
Japap						
A.f.	TATPRSEA0-	-VPGVLNRN-	DLKISSPNGL	SNGPSPAKSTI	SGOTPNSOTS	RPGSGTLN
Yap1	260	270	280	290	300	310
	230	24	0 2	50	260	270
yap1p	KLSDATDSSS	ATLDSLSN	SN-DVLNNTP	ISSTSMDV	FLDNVIYTNRF	7SGDD GSNS
	:	::				:
A.f.	GAVD NN GAAR	GYQVNSSYSA	STKQ ATHD TP:	SDSPSSSSD	SHQSQLLSSNG	SPEPSLHS
Yap1	320	330	340	350	360	370
	200	200	20.0	210		
wan1n	ZOU KTENIDENNE	290 SNDENEENOE	DEOUCEECCU	SIU NOVCETROCI	отв	
չզիւի	KIKULD SUH	SADENEENQE				
A.f.	PAVKATESST	PHACTYTTIN	IGEESECAN	SMACGNINNI	ртр	
Yap1	380	390	4	10 41	10	
-		100-000			7.73	
	590	600	610	63	20 630)
yap1p	D NDND V VP SK	EGS-LLR <mark>C</mark> SE	IWDRITTHPK	ZSDIDVDGI	CSELMAKAKCS	SERGVVINA
A.f. DEDEEVVP GEDK SQMLT CNK IWDRLQ SMEKFRN GEIDVDNLC SELRT KARC SEG GVVVNQ						
Yap1 5	10 52	0 53	0 54	551	J 560	
	640					
wante	FDW01 ALME					
չզիւի	LD VQLALAK		_			
A.F. KOVEDINGR Cvs rich domain						
Yap1 570 ys i ci uoliani						
	1511711					

Nuclear accumulation of Afyap1-eGFP upon H₂O₂ stress

Sensitivity of **Afyap1** against ROI

No growth difference in the presence of diamide, high salt, SDS, CdCl₂

Are ROI detoxifying catalases in A. fumigatus

regulated by Afyap1?

Northern Blot analysis

Catalase I

Catalase II

Thioredoxin peroxidase

P-Nitroreductase

Afyap1 is a key regulator of A. fumigatus required for defence against ROI.

Mouse infection model

No attentuation in virulence of the *Afyap1* strain in a leukopenic murine infection model

ROI production by granulocytes (PMNs)?

Coincubation of granulocytes with hyphae after addition of ROI inhibitors

Killing of A. fumigatus hyphae by PMNs

Addition of glutathione and DPI had no effect on survival of A. fumigatus WT and Δ Afyap1 coincubated with PMNs.

Summary

- Proteome map established
- Response to peroxide at proteome level:
 - (i) transient

(ii) antioxidant defence enzymes, heat shock proteins, the pentose phosphate shunt, protein translation and cytoskeleton

- A lot of the identified proteins are apparently regulated by the Yap1 homolog Afyap1. Nuclear localisation was shown.
- Deletion of Afyap1 led to increased sensitivity against O₂⁻ and O₂²⁻. No attenuation in virulence or reduced killing by neutrophil granulocytes. Direct indirect role of ROI?

Proteomics and its application to diagnosis

Diagnosis of invasive aspergillosis

I. Direct techniques

Microscopy and histology

- **II.** Cultivation
- **III.** Serological techniques

Antigenes: Galactomannan, (1,3)- β -D glucan Antibodies directed towards *A. fumigatus*

Metabolites

PCR tests

IV. Radiological imaging

Serological testing for acute invasive pulmonary aspergillosis:

- Mostly based on detection of antigens
- The relevance of antibody testing is under debate: Impaired antigen presentation in neutropenic patients is assumed (Reichenberger et al. 2002)
- Antibody production has been documented in some cases (e. g. Chan et al. 2002)
- Antibody assays may confer prognostic information (Hope et al. 2005)
- High titers of anti-Aspergillus antibodies in many patients before transplantation (Sarfati et al. 2006)

Known antigens and allergens

Around 20 allergens for *A. fumigatus* are known (ABPA): Asp f 1-Asp f 13, Asp f 17, Asp f 18, Asp f 22, Asp f 23, Asp f GST, Asp o lipase

Antibody detection in Invasive Aspergillosis:

- Mitogillin (Weig et al 2001; Schwienbacher et al. 2005)
- Chitosanase chiB1 (Schwienbacher et al. 2005)
- Mannoproteins Afmp1p and Afmp2p (Woo et al. 2002; Ken et al. 2004)
- Cu,Zn superoxide dismutase (Holdom et al. 2000)
- Ribonuclease, catalase and dipeptidylpeptidase V (Sarfati et al. 2006)

→ New more A. fumigatus antigens for diagnosis of IA, ABPA, aspergilloma?

Proteomic approaches I – 2D gel electrophoresis

2D-gel electrophoresis

Detection with anti human IgG antibodies

Proteomic approaches II – SELDI-TOF

SELDI-TOF = Surface-enhanced laser desorption/ionisation time-of-flight

Protein arrays

Proteome Science 2003 1:3

Acknowledgement

Hans Knoell Institute:

Robert Winkler

Daniela Albrecht

Axel Brakhage

Teutschbein

Silke Steinbach

Reinhard Guthke

Martin Vödisch

Franziska Lessing

Matthias Brock

Cooperation:

University Würzburg Hermann Einsele & Jürgen Löffler Iwona Wozniok

Institute Pasteur Jean-Paul Latgé

EU:

Deutsche Forschungsgemeinschaft

Priority Programme 1160

