Role of Bacteria, Archaea and Fungi involved in Methane Release in Abandoned Coal Mines

Author:

Sabrina Beckmann, Martin Krüger, Bert Engelen, Anna A. Gorbushina & Heribert Cypionka

Date: 17 July 2012

Abstract:

Worldwide, abandoned coal mines release substantial amounts of methane, which is largely of biogenic origin. The aim of this study was to understand the microbial processes involved in mine-gas formation. Therefore, coal and timber samples and anaerobic enrichments from two abandoned coal mines in Germany were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, Fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). A broad spectrum of facultative anaerobic bacteria and acetogens belonging to all five groups (α-ε) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi were detected. Archaea were represented by acetoclastic Methanosarcinales and Crenarchaeota with an unknown metabolism. Fungi formed thick biofilms particularly on timber, and were identified as typical wood degraders belonging to the Ascomycetes and Basidiomycetes. The community analysis as well as the environmental conditions and the metabolites detected in a previous study are consistent with the following scenario of methane release: Weathering of coal and timber is initiated by wood-degrading Fungi and Bacteria under a suboxic atmosphere. In the lower, oxygen-depleted layers Fungi and Bacteria perform incomplete oxidation and release reduced substrates which can be channeled into methanogenesis. Acetate appeared to be the main precursor of the biogenic methane in the investigated coal mines.

Link to DOI

Download the full article (Disclaimer)

This manuscript library of ~16,000 articles (1729-2024) related to Aspergillus and aspergillosis is intended for individual study only, and is provided as contribution to global understanding of the topic. Please refer to the publisher’s guidance about any other usage.